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ABSTRACT

In order to train fully autonomous, unsupervised agents, reinforcement learning
algorithms must be able to operate without human-specified domain knowledge
of the task, agent, or environment. To this end, we propose a framework which
utilizes a flow-based model to generate goals directly in an agent’s state space,
and trains a policy to achieve these goals. This allows us to encourage exploration
by sampling goals from less-visited regions of the state space or generating novel
goals. Further, we introduce a safety-motivated formulation which assumes pes-
simal dynamics while training our agents. Empirically, we demonstrate that goal
generation in the full state space allows unsupervised agents to learn pose- and
velocity-based behaviors in two simulated robotic environments.

1 INTRODUCTION

Recent advances in reinforcement learning have made great strides in training self-sufficient,
general-purpose agents which can explore their environment and learn to perform a variety of tasks
in an unsupervised fashion. In this work, we consider the problem of training an unsupervised agent
capable of achieving arbitrary goals in its state space. Without prior knowledge of the environment,
this requires that the agent explores and sets novel goals for itself during training.

However, previous work in exploration with goal-conditioned policies has relied on a human-
specified goal space and reward function. In particular, the goal space in Hindsight Experience
Replay (HER) (Andrychowicz et al. (2017)) and GoalGAN (Florensa et al. (2018)) are 2- or 3-
dimensional position vectors of an object in the environment. As such, these agents are incapable of
learning skills requiring pose and/or velocity information, such as balancing or spinning. We instead
specify goals directly in the agent’s full state space.

Further, in order to encourage our agent to explore novel regions of its environment and develop
diverse behaviors, we fit a flow-based generative model to the set of states our agent has experienced.
During training, we then automatically generate goals from regions of the state space which the
model estimates to have lower density.

Lastly, we introduce a safety-motivated modification to the Stochastic Value Gradient (SVG) frame-
work (Heess et al. (2015)). If we have access to a model of the environment’s dynamics, we can
optimize our policy while assuming adversarial dynamics or sensor noise, thus teaching the agent to
avoid potentially catastrophic outcomes.

In summary, our main contributions are 1) automatic goal generation for exploration in the full state
space, and 2) a method for training an agent under a pessimal dynamics model.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We consider a discrete-time, goal-conditioned Markov Decision Process (MDP) defined by states
and goals s, g ∈ S, actions a ∈ A, a transition probability distribution d(s′|s, a), and a reward

1



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

function r(s, a, s′, g) ∈ R. Our goal is to train a policy π(a|s, g) which maximizes the expected
sum of rewards.

2.2 STOCHASTIC VALUE GRADIENTS

Value gradient methods optimize a policy by propagating gradients through a learned dynamics
model and value function. Stochastic value gradients (Heess et al. (2015)) utilize the reparame-
terization trick to enable gradient propagation in the case of a stochastic policy and/or dynamics
model.

2.3 HINDSIGHT EXPERIENCE REPLAY

Hindsight experience replay (Andrychowicz et al. (2017)) is a technique for increasing the sam-
ple efficiency and learning signal for goal-conditioned reinforcement learning. Since the environ-
ment’s dynamics are fixed, we can relabel the states achieved along a trajectory as goals for training
purposes. Combined with an off-policy reinforcement learning algorithm, this has been shown to
increase sample efficiency and allow learning even if rewards are extremely sparse.

2.4 FLOW-BASED MODELS

Flow-based models, introduced in Dinh et al. (2016), learn an invertible transformation f between
the data x ∈ Rn and a latent variable z ∼ Z = N (0, In). If Z = fenc(X) and f−1 = fdec, pX(x) is
given by the change-of-variables formula

log(pX(x)) = log(pZ(z)) + log(
∣∣∣ det

∂fenc(x)

∂x

∣∣∣). (1)

In this work, we utilize flow-based networks to parameterize models of the state distribution f(s),
the dynamics distribution d(s′|s, a), and the policy π(a|s, g). We construct our neural networks by
stacking invertible matrices (as introduced in Kingma & Dhariwal (2018)) with smooth parameter-
ized ReLU nonlinearities (refer to Appendix B for details).

3 RELATED WORK

Our work is closely related to prior approaches in intrinsic motivation (Deci & Ryan (2010)), where
agents are incentivized to explore or learn skills in the absence of a provided reward function.

Curiosity-driven Exploration by Self-supervised Prediction (Pathak et al. (2017)) and DIAYN (Ey-
senbach et al. (2018)) have demonstrated the feasibility of unsupervised exploration and skill aqui-
sition in an environment. However, these works do not follow the goal-conditioned reinforcement
learning framework. Their agents therefore require post-algorithmic retraining or fine-tuning in
order to accomplish specific tasks.

On the other hand, GoalGAN (Florensa et al. (2018)) utilizes the goal-conditioned framework, but
requires a human-specified goal subspace of the state subspace, which limits the range of behaviors
learnable by the policy. A recent work, Skew-Fit (Pong et al. (2019)), utilizes a similar approach
to ours and operates in the high-dimensional observation space of images. However, it simplifies
the control problem for the agent by making the action space (x, y, z) positions or velocities of an
end-effector. We demonstrate that this approach can succeed in high-dimensional action spaces with
complex, nonlinear, contact dynamics.

4 METHODS

We use the SVG framework with HER (Andrychowicz et al. (2017)) to train our agent. Addition-
ally, we train invertible, flow-based generative models to maximize the log-likelihood of the state
distribution f(s), the dynamics distribution d(s′|s, a), and an estimate of a safe policy πsafe(a|s, g).
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4.1 GOAL GENERATION FOR EXPLORATION

In order to encourage the agent to explore previously less-visited areas of the state space, we wish
to sample goals for the agent in those less-visited areas. Therefore, during each episode, we sample
m potential goals g = fdec(z), z ∼ Z = N (0, I). We then select the goal with the least likelihood
pf (g) under f for the agent for that episode.

4.2 CHOICE OF REWARD FUNCTION

Following Florensa et al. (2019), we wish to use the minimum number of timesteps needed to reach
a goal as the learning signal for our RL agent. This corresponds to the optimal (undiscounted) value
function being equal to the negative distance (in number of actions) between a state and a goal.
Combined with a dynamics model, this allows an agent to perform planning towards a goal directly
in the action space.

However, rather than using the binary reward r(s, a, s′, g) = 1{s′ == g}, we wish to award
“partial credit” for achieving states similar to the goal state. This is necessary when working with
the full state space (including velocities), as the sampling rate of the system may otherwise lead
to improperly rewarded actions. For example, consider a one-dimensional agent operating at 1 Hz
attempting to reach g = (x, ẋ) = (0.5, 1). If the agent starts at s = (0, 1) and the environment is
frictionless, the agent will achieve the goal if it applies no force. However, under the binary reward
specification, the agent would receive no reward, as s′ = (1, 1) 6= g = (0.5, 1).

We therefore choose the reward function to be r(s, a, s′, g) = −1 + exp(−k||fenc(s
′)− fenc(g)||2)

for some constant k. Increasing k has the effect of removing reward shaping and making the signal
more sparse; as k approaches infinity, the original binary reward signal is recovered (since f is an
invertible function).

4.3 LEARNING A SAFETY-BASED POLICY

We adopt the undiscounted value function formulation from SVG:

V π(s, s) = 0, V π(s, g 6= s) = Es′∼d(s,a),a∼π(s,g)[r(s, a, s′, g) + V π(s′, g)]. (2)

However, rather than training our policy to maximize V π(s, g), we train

πsafe(s, g) = arg max
a∈A

min
s′∈supp(d(s,a))

[r(s, a, s′, g) + V π
safe

(s′, g)], (3)

where supp(d(s, a)) denotes the support of d(s, a). If d(s, a) has infinite support, this formulation
can be modified to select s′ from the nth percentile of [r(s, a, s′, g) + V π

safe
(s′, g)].

Compared to optimizing for V π , learning V π
safe

has the advantage of being risk-averse with respect
to the dynamics model. This formulation is enabled by our use of the shaped reward function:
in a stochastic environment, an agent would never be able to receive the binary reward assuming
adversarial dynamics or sensor noise. However, the shaped reward is more robust to these effects.

In practice, we do not solve for the optimal a and s′ in the formulation of πsafe. Instead, we evaluate
a set of generated candidate actions Acand under N rollouts of our learned dynamics model, and
update the policy to maximize the log-likelihood πsafe(abest|s, g) of the best action.

Our full algorithm is presented in Appendix A.

5 EXPERIMENTS

We test our algorithm in two standard robotic environments, Cartpole and Ant, using the MuJoCo
simulator (Todorov et al. (2012)). We use the XML files from the DeepMind Control Suite (Tassa
et al. (2018)), with one modification. In order to further our long-term objective of developing agents
capable of life-long learning in the real world, we do not reset the environment. This in turn requires
that the agent not have any “dead” states from which it is unable to recover (such as the Ant flipping
over). We therefore extend the control range for the Ant’s joints to be symmetric about the xy-plane.
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Figure 1: The Cartpole agent is able to keep the pole swinging to the left (top) or the right (middle),
or to briefly balance it (bottom).

We find that we are able to learn general agents capable of achieving a variety of desired behaviors.
Although our Cartpole agent (Figure 1) is unable to perfectly balance the pole, it takes an active
approach towards balancing and can continuously spin the pole in either direction, demonstrating
a more general, human-like distribution of skills. Our Ant agent (Figure 2) exhibits the ability to
perform a diverse set of actions, including flips, jumping, spinning, handstands, and locomotion.
Videos of our experiments are available at this site.

5.1 ABLATION STUDIES

We conduct ablation studies on a toy environment (Figure 3) to determine the effects of exploration
using our generative model and our safety-based policy. In this Ramp Pointmass environment, a
ramp placed on the right hand side of the environment affords access to a ledge at the top. Noise
(sampled from a truncated normal distribution) is added to the agent’s action at every timestep;
however, the environment is bounded by walls, so that the agent cannot fall off of the ramp on the
right or the ledge on the top. We show that exploration reduces the time required for the agent to first
reach the ledge. We also find that a safety-based policy learns more quickly than an expectation-
based policy to hug the right wall when climbing the ramp.

6 CONCLUSIONS AND FUTURE WORK

We have demonstrated that completely unsupervised agents can explore their environment and learn
a diverse set of behaviors while prioritizing safety. In particular, we have shown that a goal-driven
agent benefits from exploration through state density estimation in the state space, and introduced a
safety-based modification to the SVG framework which results in more efficient learning under noisy
conditions. Future work includes investigating the application of these techniques for image-based
domains and representation learning. Lastly, we have developed several techniques for reducing
the training time for the agent; these are detailed in Appendix A and we hope to provide a more
thorough analysis of these in the future.
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Figure 2: The Ant agent is capable of a variety of skills, including (top-to-bottom) flipping, hand-
stands, spinning, jumping, and two modes of locomotion. We encourage readers to view videos of
the agent here.

Figure 3: Far left: The Ramp Pointmass environment. A good agent should explore the environment
and learn to reach the top ledge while operating under noisy conditions. Middle left: The policy
action distribution after 100 epochs for an agent moving up the ramp under the pessimal policy.
Note that it strongly avoids moving to the left, as doing so could lose much more progress than just
moving down the ramp. Middle right: The policy action distribution after 100 epochs for an agent
moving up the ramp under the non-pessimal policy. In contrast to the pessimal policy, this agent
does not avoid moving to the left. Far right: The maximum distance up the ramp obtained by agents
sampling goals from an exploratory distribution or the state distribution.
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A TRAINING ALGORITHM

Since the publication of SVG (Heess et al. (2015)), a number of improvements to Q-learning have
been proposed. We find that we can apply the intuition for many of these improvements to the
SVG framework. Double DQN (Van Hasselt et al. (2016)) noted that Q-learning suffered from
overestimation of Q-values and proposed to ameliorate the problem by training two Q-functions.
This reduced the optimism bias of Q-learning agents; our safety-based policy extends this idea by
assuming pessimal dynamics, similarly to TD3 (Fujimoto et al. (2018)).

TD3 also notes that the variance of the value function estimator can cause instability during training.
They recommend using a slowly-updating target network and multiple value updates per policy
update; however, we are able to avoid these issues by training a curriculum network (inspired by
GoalGAN (Florensa et al. (2018))) to propose samples for training the value function. We introduce
a generative curriculum model c(s|g) for the distribution pc(s|g) ∝ l(s, g) exp(V (s, g)), where
V (s, g) is the value function estimate for (s, g) and l(s, g) is the squared error for V (s, g). Since
our value function is approximately the negative number of timesteps needed to reach the goal,
drawing samples from c(s|g) prioritizes minimizing the error for states near the goal. This helps to
avoid propagating errors from V (st+1, g) to V (st, g) when training the value function.

Additionally, we use replay buffers with weighted entries to speed up agents’ exploration and train-
ing. Although we would like to explore goals in low-density regions of the state space (“rare” goals),
they are unlikely to be sampled from a traditional replay buffer. If an agent seldom updates its pol-
icy to reach rare goals, it is then even more unlikely to encounter those rare goals, further hindering
exploration. A weighted goal replay buffer can address this problem by upweighting the likelihood
of sampling these rare goals when training the dynamics model, policy, or value function.

Lastly, we make the assumption that the agent will generally pass through high-density regions of
the state space when going from one low-density region to another. If this assumption holds, using
an unweighted state replay buffer could cause high-density regions of the state space to become
increasingly likely throughout training. However, we can downweight the states encountered in
earlier episodes to make these high-density states less likely. Notably, under the assumption, this
downweighting does not affect the relative ordering of states by their likelihood. Empirically, we
find this downweighting beneficial when training the state distribution model f . A consideration
for future work is avoiding making this assumption by sampling goals that are both exploratory and
near the agent’s current state.

Our full algorithm is detailed in Algorithm 1.

B HYPERPARAMETERS

For all of our experiments, we used exploration factor m = 20, probability of sampling from cur-
riculum pcurric = 0.8, size of action candidate set j = 1, number of dynamics rollouts to approx-
imate value function N = 20, minibatch size mb size = 1000, number of updates per episode
n updates = 100, and ran 50 environments in parallel to decrease wall-clock time. The only hy-
perparameters we varied were the state memory half-life h and the reward shaping factor k. We set
h = 20 for the Ramp Pointmass and Cartpole environments, and h = 50 for the Ant; we set k = 100
for the Ramp Pointmass environment and k = 10 for Cartpole and Ant.

We used multilayer perceptrons (MLPs) with 4 hidden layers of size 200 and parameterized
ReLU (PReLU) activations (He et al. (2015)) to parameterize our models, and use AdamOptimizer
(Kingma & Ba (2014)) with learning rate 0.001 for training.

B.1 FLOW-BASED MODEL ARCHITECTURE

Following Kingma & Dhariwal (2018), we parameterize our flow-based transforma-
tions as fenc(x) = W1h1(...Wn−1h

−1
n−1(Wnx)...), where the Wis are invertible ma-

trices of the form W = PLDU and D = diag(dsgn exp(d)) for dsgn ∈ {−1, 1}.
When initializing our model, we sample a random matrix W , decompose it into
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Algorithm 1: Training an unsupervised, generalist agent in an arbitrary environment
Initialize generative, likelihood-based models for the state distribution f(s), dynamics d(s′|s, a),

policy π(a|s, g), and curriculum c(s|g). Initialize a value function approximator V (s, g).
Initialize weighted replay buffers for states s, goals g, and dynamics transition tuples t = (s, a, s′).
Get initial state s = agent.get obs().
Hyperparameters: exploration factor m, probability of sampling from curriculum pcurric, size of
action candidate set j, number of dynamics rollouts to approximate value function N , state
memory half-life h, reward shaping factor k, minibatch size mb size, number of updates per
episode n updates.

while true do
// Update target value function.
Vtarg ← V
// Collect data for the episode.
Take samples {z1, . . . , zm} from z ∼ N (0, I) and decode goals gi = fdec(zi). Choose
g = arg min{g1,...,gm} pf (gi).

Estimate vcur = vprev = V (s, g).
while vcur ≥ vprev do

vprev ← vcur
Sample a ∼ π(s, g).
Execute agent.act(a) and receive new state s′.
Add s′ to the state and goal replay buffers and (s, a, s′) to the dynamics replay buffer. Set

the weight of s′ to 1 in the state replay buffer and to 1
pf (s′)

in the goal replay buffer. Set
the weight of (s, a, s′) in the dynamics replay buffer to 1

pf (sdi )pf (s
′d
i )

.
s← s′

Estimate vcur = V (s, g).
end
// Update networks and replay buffers.
for update ∈ range(n updates) do

Sample a minibatch of mb size samples from each of the replay buffers.
Update state distribution model, dynamics model, and policy to maximize the expected

log-likelihood of f(s), d(s′|s, a), and π(a|s, g), respectively.
For each transition ti = (sdi , a

d
i , s
′d
i ) in this minibatch, update the weight of ti in the

dynamics replay buffer to 1
pf (sdi )pf (s

′d
i )

.
For each goal gi in this minibatch, update the weight of gi in the goal replay buffer to

1
pf (gi)

.
For each goal gi, sample sci = c(gi; z), z ∼ N (0, I).
For each state si, update si ← sci with probability pcurricpf (sci )

pcurricpf (sci )+(1−pcurric)pf (si)
.

For each (si, gi) tuple, do (li, vi) = Update Value Function and Policy (si, gi).
For each (si, gi, li, vi) tuple, update c(si|gi) to maximize the probability of si, weighted by
li exp(vi).

For each gi, update the value function approximator to minimize V (gi, gi)
2.

end
Downweight all states in the state replay buffer by a factor of wstate decay = 0.5

1
h .

end
Function Update Value Function and Policy (s, g):

Sample Acand = {aπi ∼ π(s, g)} ∪ {arand
i ∼ U([−1, 1]action dim)}, i ∈ {1, . . . , j}.

For each a ∈ Acand, add a′ = a+∇a(r(s, a, s′, g) + Vtarg(s′, g)) for s′ ∼ d(s, a),
r(s, a, s′, g) = −1 + exp(−k||fenc(s

′)− fenc(g)||2) to Acand.
Sample εi ∼ N (0, I) for i ∈ {1, . . . , N}.
Select abest = arg maxa∈Acand minεi∈{ε1,...,εN}[r(s, a, s

′
i, g) + Vtarg(s′i, g)], where

s′i = d(s, a; εi).
Compute vtarg = 1

N

∑N
i=1[r(s, abest, s

′
i, g) + Vtarg(s′i, g)], where s′i = d(s, a; εi).

Update V to minimize l = (V (s, g)− vtarg)2.
Update π to maximize π(abest|s, g).
return (l, vtarg)
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PLDU , fix P and dsgn, and learn L, d, and U . We introduce h(x;α, β) =
αx x ≤ −1

a(x2 + 1) + b −1 < x < 1

βx x ≥ 1

,

where a = β−α
4 and b = β+α

2 , as smooth PReLU, which is invertible and every-
where continuous and differentiable for β > 0 and α > 0. We alternate between
h and h−1 nonlinearities in constructing f , as we find that this stabilizes train-
ing.

When we are learning a conditional model fenc(x; c), we modify this formulation
only sightly, by learning (log di, log ai, log bi) = MLP(c) for i ∈ {1, . . . , n}.

For f(s) and c(s|g) we use n = 20; for d(s′|s, a) and π(a|s, g) we use n = 2.
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