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Abstract
This paper introduces Plan2Vec, an unsuper-
vised representation learning objective inspired
by value-based reinforcement learning methods.
We show that even without access to actions, we
can learn plannable representations that inform
long-range structures, purely passively from high-
dimensional sequential datasets without supervi-
sion. The network learns by playing an “Imag-
ined Planning Game” on the graph formed by the
dataset, using a local metric function trained con-
trastively from context. We show that the global
metric on this learned embedding can be used
to plan with O(1) complexity by linear interpola-
tion.This is an exponential speed-up critical for
planning on any learned representation that con-
tains non-trivial global structure.

1. Introduction
Much of self-supervised or unsupervised learning from se-
quential data are concerned with learning from structures
available within a single frame of observation (Kingma &
Welling, 2013; Hjelm et al., 2018; Oord et al., 2018), or se-
quences in a narrow spatiotemporal-window (Perozzi et al.,
2014; Caron et al., 2018) As a result, such learning objec-
tives usually place only local constraints on the embedding.

In addition, it is often unclear in an unsupervised learning
setting what construes a “good feature”. The usual fall-back
is to evaluate the learned features on a set of classification
tasks (Guo et al., 2018), or showing samples that activates a
particular filter channel (Caron et al., 2018). In reality, when
such representations are used on an agent trying to master a
certain task in the real-world, the embedding devolves into
nothing more than a lossy dimensionality reduction of the
original input, lacking otherwise informative structure be-
yond what’s inside each image. This problem becomes more
pronounced when the latent configuration space underlying
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the observations are complex and high-dimensional. Take
humanoid for example, without search heuristics involving
a long-range metric, classical planning algorithms that take
advantage of only local constraints would slow down expo-
nentially in such cases, eventually falling to a halt (Chua
et al., 2018).

Meanwhile, value-based reinforcement learning algorithms,
in particular universal value function approximators (UVFA,
see Schaul et al. (2015)) aim to learn a goal-conditioned
value function V (s, g) over all state-goal pairs. This is
equivalent to learning a global and long-range distance met-
ric. Besides being useful as an informative heuristics for
planning, such learned value function can be used as lin-
ear features to represent temporal abstraction over actions
(Sutton & Tanner, 2005) in addition to the observed state
space. When combined with a closed-form policy trained
in-tandem where the gradient/reward signal for the policy
comes entirely from the learned value function approxima-
tor, such methods are able to learn highly complex maneu-
vers on non-trivial topology with or without explicit forward
planning (Peng et al., 2018; Pong et al., 2018).

Motivated by these observations, we propose to learn a
plannable representation with no supervision, by introduc-
ing sample-based value iteration with a planning policy as
the sole learning objective. The theoretical difficulty is
threefold:

1. Standard formulation of reinforcement learning require
substantial human supervision in the form of meticulously
shaped dense rewards.
2. Reinforcement learning is active. It requires interaction
with a environment between optimization phases to receive
on-policy trajectories that eventually reaches optimality.
3. In order to plan on a continuous state and action space,
one usually need to learn a close-form behavior policy, or a
forward model of the environment.

The main contribution of this paper is that we solve all three
problems, by formulating learning the global structure of
a data manifold as learning a planning agent that tries to
master an imagined “reaching game” on a dataset. To solve
point 1, we make human supervision for designing the re-
ward unecessary by using a local metric function trained
contrastively by local context as the reward function. To
solve point 2, we remove the need for either action data,
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or a model of the world, by planning entirely in the latent
configuration space on a graph. To solve point 3, we formu-
late the policy as a planning network that uses the global
metric being learned as a planning heuristic. We show that
on low dimentional state space we can boostrap a global
metric by doing value iteration on planned paths. In ad-
dition we show preliminary results on deformable object
manipulation, where the data comprise of different rope
configurations.

2. Learning Representation by Latent
Planning

Our objective is to find a way to learn a representation that
has sensible global structure that makes non-trivial plan-
ning computationally feasible in the latent space. In this
section, we will describe a method that casts learning such
a representation as an imagined “planning game” that the
network plays, using only unsupervised temporal sequence
data. Different from (Watter et al., 2015; Banijamali et al.,
2017) and similiar to (Kurutach et al., 2018), our method
does not rely on dynamics of the underlying environment in
the form of sampled action data, and neither do we learned
a forward model. This is because such local and detailed in-
formation often distracts from long-range planning. Instead,
our imagined game occurs on a graph where disjoint tem-
poral sequences are connected via a local metric function
trained using a contrastive loss similar to (Sermanet et al.,
2017; Mikolov et al., 2013). Our network then optimizes the
embedding of this graph by learning a policy for navigating
this graph that plans using this embedding as a planning
heuristic.

In the next sections, we will overview how our method
“connects the dots” by learning a local metric function, and
then extrapolating these local knowledge of the dataset to
a global embedding via value-iteration. During each game
play, we sample two random samples x0 and xg from the
dataset. We formulate the task as trying to reach the target
xg from x0 by hopping through intermediate datapoints
x[1:g]. In a typical sequential dataset in a continuous sample
space, points from different sequences are rarely identical.
To connect the dots, and construct a connected graph on
which planning could happen, we first learn a local metric
function contrastively from the local context within each
sequence. We show that the local metric function learned
this way generalize well.

Then we formulate the imagined “planning game” and the
planning agent. The agent samples in the dataset using the
global metric that we are trying to learn as the heuristic. The
reward simply measures how many hops that the agent has
made in reaching the target. By focusing on observation
data without action samples, we avoid learning a forward
dynamic model, which often distracts from the long-range

planning objective.

Our method builds upon prior works in unsupervised repre-
sentation with contrastive losses and value-based reinforce-
ment learning methods. In particular, we will overview
methods that learn a local distance metric between pairs
of images, and value iteration under a standard Markov
decision process (MDP) formalism.

3. Contrastive Losses and Local Metric
Our key observation is that in sequential dataset, the tem-
poral sequence is usual optimal over shorter temporal span,
and suboptimal over longer ranges. Learning a local met-
ric function has the advantage that the model only need to
memorize datapairs in a reduced neighborhood, leading to
improved generalization.

Figure 1. Monte Carlo sampled data offers good local learning
signal, but over long-term, the behavior policy responsible for
sampling is usually sub-optimal. As a result the distance over the
trajectory is usually not well-behaved. Left: prediction of metric
versus ground-truth distance, learned from image-input. Right:
same local metric function evaluated over complete sequences.
One can see that over longer range, the signal start to contain much
less contrast.

Algorithm 1 Local Metric Learning with Contrastive Loss
Require: set of observation sequences {τ = x[0:T ]}

1: Initialize fφ
2: Sample xt, x+t+1 where xt, xt+1 ∈ τi, y+ = 1
3: Sample xt, x− where x− ∼ τj where x /∈ τj , y− = 0
4: for each epoch do
5: minimize ‖fφ(x, x∗)− y∗‖2 for x, x±, y±

6: end for

We can then use this local metric function to connect disjoint
trajectories in the dataset into a connected graph, and then
use it as a good supervision signal as the reward for learning
the planning agent.

3.1. Organizing the Gloabl Structure of the Latent
Space By Planning

We formulate value iteration under the Markov decision
process (MDP) formalism. An MDP is usually parameter-
ized as the tuple 〈S,A, P,R〉 where S and A are the set of
state and actions. P (s′|s, a) is the transition function of the
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Figure 2. Left: Contrastively trained local metric funcition. Y-axis
is the output of the metric function (score). x-axis is the ground-
truth distance between the two input samples. Trained from state-
space inputs. Right: input data pairs. Color red indicates the
metric function considers the pair to be far-apart, blue indicate
that the pair are in a small neighborhood.

Figure 3. Plot showing clusters of neighbors that our local metric
function learns. Each cluster orginates from a single datapoint.
Each radial line indicates one neighbor. Most neighbors are from
trajectories different from the one for the point itself.

environment. R(s, a, s′) is the reward. An agent is usually
represented by the policy distribution π(a|s).

Take the reward function for a specific task RT and a policy
π, we can learn a state-action value function Qπ : S×A→
R that returns the expected future value for executing action
a at state s, conditioned on the policy.

In sample-based Q-learning with deep neural network func-
tion approximators, we minimize the sample-based bellman-
residual

δ =
∥∥V (s)− BV

∥∥ (1)

where the bellman operator is defined as

BV = R(st, at, st+1) + γmax
a

V (st+1). (2)

Samples takes the form of the tuple 〈st, at, rt, st+1〉, and
usually importance sampled from a replay buffer.

Because value-iteration is on-policy, we clear the replay
buffer after a few epochs. We also use high-sight experience
re-labeling to insert positive reaching examples from the
trajectories to improve the rate of learning.

Because game plays occur entirely inside the imagined task
on the dataset, we can sampling multiple next points for

Algorithm 2 Unsupervised Learning by Latent Plans
Require: planning horizon H
Require: set of observation sequences S = {τ = x[0:T ]}
Require: local metric function φ(x, x′)⇒ R+

Require: reward function r(x, xg) = 1N(xg,ε) − 1
1: Initialize global embedding ϕ(x, x′)⇒ R+

2: repeat
3: sample x0, xg ∈ S as start and goal
4: repeat {h=0, h++}
5: find set n = {x′ s.t. φ(x0, x′) ∈ N(1, ε)}
6: find x∗ = argminx∈n ϕ(x, xg)
7: compute rt = r(x∗, xg)
8: add 〈x, x∗, rt, xg〉 to buffer B
9: until r = 0 or h = H

10: Sample 〈x, x′, r, xg〉 from B
11: minimize δ =

∥∥Vϕ(x, xg), r + Vϕ(x
′, xg)

∥∥
2

12: until convergence

the value function replay. This is directly related to soft-
Q learning in that the hard maximization operation is now
replaced by a boltzmann sampling, where the distance func-
tion is treated as an energy model. A temperature constant
regulates the sampling of this behavior policy

We experimented with three different types of reward.

• using the ground-truth distance as the reward. This
case serves as a control, to validate that other parts of
the algorithm is working.

• binary reward where the reward is 0 if the next planed
step is within the neighborhood predicted by the local-
metric, 1 otherwise.

• using the value of the learned local-metric function as
the reward.

Reward Planning Success Rate

ground truth r 96.8%± 2
local metric r 96.6%± 1
binary reward 95.8%± 1

We found that all three methods learns well. The fact that
we can use a binary reward instead of a local-metric learned
by contrastive regress, means that we could potentially use
more conceptual local information for training.
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Figure 6. Examples of rope pairs that are connected (positive, left),
and not connected (negative, right). These samples are found in
the dataset by a trained local-metric function.

Figure 4. Planning steps learned via value iteration. Red dot is the
goal position, blue dot is the plannd next step (1-step) using the
global metric function. Green dots are the neighbors inferred via
the local metric function. Gray dot is the current position of the
agent.

Figure 5. The learned value function and the planned trajectories.
Left: 7x7 Map of the value function. Each plaque (out of 7x7) is
a 21x21 map of the state space. Value goes from zero (blue) to
red. Each plaque corresponds to a different goal position, visible
as the peak (blue) of the plaque. Right: Two planned trajectories
from the left value function. Showing the planned trajectories
succesfully reaching towards the goals.

Our result shows that value iteration is able to learn a global
embedding without supervision on a 2-dimensional robot
navigation domain. The planning agent is able to reach
the goal position within 10 steps of planning. We believe
these results show great promise for extending our method
to more complex global topology.

4. Discussions
The work most similar to us from the manifold learning
community is DeepWalk (Perozzi et al., 2014). DeepWalk
uses a random policy to sample short trajectories from a

Figure 7. Learning curve of the planning agent. Showing 96.7%
planning success rate with the learned value function (left), and
average 10 steps in reaching the goal position during planning.

social graph. Then uses skip-gram (Mikolov et al., 2013) to
learn a node embedding from its context in those trajectories.
This contextural embedding objective resembles the con-
trastive embedding loss we use to supervise our local metric
function. Despite of these similarities, DeepWalk does not
formulate a learned policy, and falls under the category of
representation learning algorithms that only learns from a
localized context. Our key contribution is to cast unsuper-
vised learning as learning a representation for a planning
agent.

In manifold learning, locally linear embedding (LLE) sim-
ilar to DeepWalk in that the local linear embedding could
be considered a “strongger” version of skip-gram, whereas
linear contributions of each neighbor is preserved. However,
similar VAE, LLE enforces global structure, and prevent vol-
umn collapse via addition of a volume regularization term
globally. This is similar to the variational prior in an VAE,
both lack meaningful alignment with planning semantics.

The similarity between DeepWalk and diffusion map liter-
ature is apparent. Compared with these, our method ex-
plicitly trains a policy which generate on-policy trajectors
that are optimum. One can argue that diffusion maps are
more closely related to the soft version of our algorithm
(see Alg.3). The hard sampling version (see Alg.2) is more
akin to Walker’s Q-learning in that the operator contains an
optimum, or when temperature is zero in the diffusion map,
where equilibrium will take infinitely long.

5. Appendix A: Soft-Value Iteration
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