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ABSTRACT

Exploration bonuses derived from the novelty of observations in an environment
have become a popular approach to motivate exploration for reinforcement learning
(RL) agents in the past few years. Recent methods such as curiosity-driven explo-
ration usually estimate the novelty of new observations by the prediction errors of
their system dynamics models. In this paper, we introduce the concept of optical
flow estimation from the field of computer vision to the RL domain, and utilize
the errors from optical flow estimation to evaluate the novelty of new observations.
We introduce a flow-based intrinsic curiosity module (FICM) capable of learning
the motion features and understanding the observations in a more comprehensive
and efficient fashion. We evaluate our method and compare it with a number of
baselines on several benchmark environments, including Atari games, Super Mario
Bros, and VizDoom. Our results show that the proposed method is superior to
the baseline in certain environments, especially for those featuring sophisticated
moving patterns or with high-dimensional observation spaces. We further analyze
the hyper-parameters used in the training phase, and discuss our insights into them.

1 INTRODUCTION

Reinforcement learning (RL) algorithms are aimed at developing the policy of an agent to maximize
the cumulative rewards collected in an environment, and have gained considerable attention in a
wide range of application domains, such as game playing (Mnih et al., 2015; Silver et al., 2016) and
robot navigation (Zhang et al., 2016). In spite of their recent successes, however, one of the key
constraints of them is the requirement of sufficiently dense reward signals. In environments where
the reward signals are spare, it becomes extremely challenging for an agent to explore and learn an
useful policy. Although simple heuristics such as ε-greedy (Sutton & Barto, 1998; Mnih et al., 2015)
or entropy regularization (Mnih et al., 2016) were proposed, they are still far from satisfactory in
such environments.
Researchers in recent years have attempted to deal with the challenge by providing an agent with
exploration bonuses (also known as “intrinsic rewards”) whenever an unfamiliar state or unexpected
observation is encountered. These bonus rewards are provided by novelty measurement strategies to
encourage the agent to explore those states with intrinsic motivation. A number of such strategies
have been proposed in the past few years, such as the use of information gain (Houthooft et al.,
2016), counting table (Tang et al., 2017), and prediction errors of system dynamics models (Stadie
et al., 2015; Pathak et al., 2017; Burda et al., 2019). Among these approaches, curiosity-driven
exploration (Pathak et al., 2017; Burda et al., 2019) has been recognized effective in several tasks
which demand extensive exploration for the sparsely distributed reward signals. It introduces a
forward dynamics model for predicting the next state feature embedding from the current state
embedding and the action taken by the agent. The discrepancy between the predicted embedding and
the actual next state embedding serves as the curiosity-based intrinsic reward. Although the use of
the forward dynamics model is sufficient for novelty measurement for low-dimensional observations,
however, it becomes difficult for it to perform such evaluation for high-dimensional inputs. In
has been widely recognized that performing next frame or next embedding prediction typically
requires complex feature representations (Kingma & Welling, 2014; Goodfellow et al., 2014; Mirza &
Osindero, 2014; Lotter et al., 2017; Xue et al., 2016). This prohibits the forward model from guiding
the agent to explore the environment efficiently.
∗Equal contribution
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Figure 1: The workflow of the proposed flow-based intrinsic module (FICM).

Instead of directly predicting the exact feature embeddings of next observations as proposed in Pathak
et al. (2017); Burda et al. (2019), in this paper we introduce a flow-based intrinsic curiosity module,
called FICM, for evaluating the novelty of observations. FICM generates intrinsic rewards based on
the prediction errors of optical flow estimation. The optical flow predictor in FICM is trained to extract
displacement features of objects between consecutive observations, such that the relatively shallow
model is enforced to learn high-level motion features in a more comprehensive and efficient manner.
One of the key advantages of FICM is that the feature embeddings extracted by its flow predictor are
inherently compact and sufficient, as the training procedure of FICM necessitates efficient encoding
of input observations as well as indifference to irrelevant features, enabling the encoded feature
embeddings to concentrate on important high-level information. Moreover, the stability of intrinsic
rewards is ensured by our training method tailored for FICM discussed in Section 3.3. We validate the
performance of FICM in a variety of benchmark environments, including Atari 2600 (Bellemare et al.,
2013) and ViZDoom (Wydmuch et al., 2018), and demonstrate that FICM is superior to a number
of baseline novelty estimation methods in terms of the learning efficiency and model complexity
of the agent in several tasks, especially for those featuring sophisticated moving patterns or with
high-dimensional observation spaces. The contributions of this paper are thus summarized as follows:

• We propose a new intrinsic reward module, called FICM, for evaluating the novelty of states
based on the prediction errors of optical flow estimation between consecutive observations.

• We employ the mean squared error (MSE) between the warped observation and the ground
truth observation to serve directly as the intrinsic reward signal. The straightforward
implementation allows FICM to consist of only a single model instead of two (i.e., the
feature extractor and the forward dynamics model in Pathak et al. (2017); Burda et al. (2019).

• We eliminate the requirement of the actions of the agent when estimating the novelty of states.
FICM demands only two consecutive frames (i.e., observations) as its input, significantly
more efficient than that of the forward dynamics model (which requires eight input frames).

The rest of this paper is organized as follows. Section 2 presents the proposed framework. Section 3
demonstrate the experimental results and discusses their implications. Section 4 concludes the paper.

2 METHODOLOGY

In this section, we present the design and implementation details of our methodology. We first provide
an introduction to the concepts of the proposed flow-based curiosity driven exploration. Then, we
formulate these concepts into mathematical equations, and discuss our training objectives. Finally,
we explore two different implementations of FICM, and discuss the features and advantages of them.

2.1 FLOW-BASED CURIOSITY DRIVEN EXPLORATION

We propose to embrace optical flow estimation (Ilg et al., 2017; Meister et al., 2018), a popular
technique commonly used in the field of computer vision for interpreting displacement of objects
in consecutive frames, as our novelty measurement scheme. Fig. 1 illustrates the workflow of the
proposed FICM. FICM takes two consecutive observations as its input, and predicts a forward flow
Fforward and a backward flow Fbackward from the pair of its input observations. The forward flow
Fforward is the optical flow inferenced from the consecutive observations ordered in time (i.e., t to
t+ 1), while the backward flow Fbackward is the optical flow inferenced from the same observations
but in the opposite direction (i.e., t+ 1 to t). The input observations St and St+1 are then warped
by the flows to generate the predicted observations Ŝt and ˆSt+1. The losses of these predicted
observations then serve as the partial intrinsic reward signals rb and rf , respectively. The sum of rf
and rb forms the final intrinsic reward ri presented to the RL agent. Based on the framework, FICM
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(a) FICM-S (b) FICM-C

Figure 2: The flow predictor architectures in FICM-S and FICM-C.

yields higher intrinsic rewards when the agent encounters unfamiliar pairs of observations. It then
motivates the agent to revisit those observations, and gradually learns the features of them over time.

2.2 FLOW-BASED INTRINSIC CURIOSITY MODULE (FICM)

In this section, we formulate the procedure of FICM as formal mathematical equations. The main
objective of FICM is to leverage the optical flow between two consecutive observations as the encoded
representation of them. Given two raw input observations St and St+1 observed at consecutive
timesteps t and t + 1, FICM takes the 2-tuple (St, St+1) as its input, and predicts a forward flow
Fforward and a backward flow Fbackward by its flow predictor G parameterized by a set of trainable
parameters Θf . The two flows Fforward and Fbackward can therefore be expressed as the following:

Fforward = G(St, St+1,Θf )

Fbackward = G(St+1, St,Θf ).
(1)

Fforward and Fbackward are then used to generate the predicted observations Ŝt and ˆSt+1 via a
warping function W (∗) defined in Ilg et al. (2017). The predicted Ŝt and ˆSt+1 are thus expressed as:

Ŝt = W (St+1,Fforward, β)

ˆSt+1 = W (St,Fbackward, β),
(2)

where β is the flow scaling factor. W (∗) warps St+1 to Ŝt and St to ˆSt+1 via Fforward and Fbackward

respectively using bilinear interpolation and element-wise multiplication with β. The interested
reader is referred to Fischer et al. (2015); Ilg et al. (2017) for more details of the warping algorithm.
Please note that in this work, W (∗) employs inverse mapping instead of forward mapping to avoid the
common duplication problem in flow warping (Beier & Neely, 1992). With the predicted observations
Ŝt and ˆSt+1, Θf is iteratively updated to minimize the loss function LG of the flow predictor G,
which consists of a forward loss Lf and a backward loss Lb. The goal of Θf is given by:

min
Θf

LG = min
Θf

(Lf + Lb) = min
Θf

(||St+1 − ˆSt+1||
2

+ ||St − Ŝt||
2
), (3)

where (Lf , Lb) are derived from the mean-squared error (MSE) between (St+1, ˆSt+1) and (St, Ŝt),
respectively. In this work, LG is interpreted by FICM as a measure of novelty, and serves as an
intrinsic reward signal ri presented to the DRL agent. The expression of ri is therefore formulated as:

ri = rf + rb =
ζ

2
(Lf + Lb) =

ζ

2
LG =

ζ

2
(||St+1 − ˆSt+1||

2
+ ||St − Ŝt||

2
), (4)

where ζ is the reward scaling factor, and rf and rb are the forward and backward intrinsic rewards
scaled from Lf and Lb, respectively. Please note that ri is independent of the action taken by the
agent, which distinguishes FICM from the intrinsic curiosity module (ICM) proposed in Pathak
et al. (2017). FICM only takes two consecutive input observations for estimating the prediction
errors of optical flows, which serve as a more meaningful measure for evaluating and memorizing
the novelty of observations in environments with high-dimensional observation spaces and sparse
extrinsic reward signals. The results presented in Section 3 validate the effectiveness of ri and FICM.

2.3 IMPLEMENTATIONS OF FICM

In this work, we propose two different implementations of FICM: FICM-S and FICM-C. These
implementations adopt different flow predictor architectures based on FlowNetS and FlowNetC
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introduced by FlowNet 2.0 (Ilg et al., 2017), respectively. We employ different implementations to
validate that Eqs. (1)-(4) are generalizable to different architectures, rather than restricted to specific
predictor designs. The flow predictor architectures are depicted in Fig. 2, and are described as follows.
FICM-S. The flow predictor in FICM-S consists of several convolutional and deconvolutional layers.
The module first stacks two consecutive observations St and St+1 together. It then feeds the stacked
observations 〈St, St+1〉 into three convolutional layers, followed by two deconvolutional layers. The
encoded features are fused with the feature maps from the shallower parts of the network by adding
skips (Fischer et al., 2015). This skip layer fusion architecture allows the flow predictor to preserve
both coarse, high-level information and fine, low-level information. At the end, the fused feature map
is passed into another convolutional layer with two filters to predict the optical flow from St to St+1.
FICM-C. The flow predictor in FICM-C encodes two consecutive observations St and St+1

separately instead of stacking them together. The input observations are passed through three
convolutional layers to generate feature embeddings φt and φt+1. The convolutional layers of the two
paths are share-weighted in order to generate comparable representations of φt and φt+1, as input
observations St and St+1 usually contain same or similar patterns. The embeddings φt and φt+1 are
then fed into a correlation layer introduced by Fischer et al. (2015). The correlation layer performs
multiplicative patch comparisons between φt and φt+1 to estimate their correspondences c, given by:

c(x1, x2) =
∑

o∈[−k,k]×[−k,k]

〈(φt(x1 + o), φt+1(x2 + o)〉 , (5)

where x1 and x2 are the patch centers in φt and φt+1, respectively. Once c is estimated, it is
concatenated with the feature map from the shallower part, and together fed into one convolutional
and one deconvolutional layers. The output feature map is then fused with the feature map came from
the skip, and forwarded to another deconvolutional layer. Similar to FICM-S, the final feature map
traverses through a convolutional layer with two filters to generate the optical flow from St to St+1.
After estimating the optical flow from the flow predictor, the predicted optical flow is used to warp St

and St+1 forward and backward using Eq. (2), and then derive LG and ri based on Eqs. (3) and (4).

3 EXPERIMENTAL RESULTS

In this section, we present the experimental results on a number of environmental settings. We start
by comparing the proposed methodology with the previous approaches on ViZDoom (Wydmuch
et al., 2018) with only sparse and very sparse extrinsic rewards. Next, we evaluate the performance
of FICM on Atari 2600 games (Bellemare et al., 2013) and Super Mario Bros., without any extrinsic
reward signals. Finally, we discuss the techniques for stabilizing the training process of our FICM.

3.1 EXPLORATION WITH SPARSE AND VERY SPARSE EXTRINSIC REWARDS IN
HIGH-DIMENSIONAL OBSERVATION SPACE

We perform experiments on the ViZDoom environment, DoomMyWayHome-v0, the same as those
conducted in Pathak et al. (2017). In this environment, the agent is required to reach the fixed
goal from its spawning location in a 9-rooms map, and only receives an extrinsic reward of +1
if it accomplishes. We adopt two setups, sparse and very sparse reward settings, to evaluate the
exploration ability of an agent. The two settings are different in the distance between the initial
spawning location of the agent and the fixed goal. We compare FICM with the baseline approaches
presented in Pathak et al. (2017), and plot the results in Fig. 3 (a). In both the sparse and very sparse
settings, our methods and the baselines are able to guide the agent to reach the goal. However, for the
very sparse reward setting, it is observed that the baselines sometimes suffer from performance drop,
and are not always able to to obtain the maximum performance. In contrast, our methods are able to
converge faster than them, and maintain stable performance consistently over different initial seeds.

3.2 EXPLORATION WITHOUT EXTRINSIC REWARD

We further perform experiments on seven different Atai games and Super Mario Bros. without
using any extrinsic reward or end of episode signal during the training phase, the same as those
conducted in Burda et al. (2019). We compare the performance of our method against the three
baselines implemented with different forward dynamics models presented in Burda et al. (2019):
VAE, Random CNN, and Inverse Dynamics, and plot the learning curves in Fig. 3 (b). It is observed
that out method (denoted as FICM-C) significantly outperforms the baselines in games Breakout,
Seaquest and Mario, while delivering comparable performance to the baselines in game Pong. These
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(a) (b) (c)
Figure 3: (a) A comparison of the learning curves in the ViZDoom environment with sparse and very sparse
extrinsic rewards. (b) A comparison of FICM and the baseline methods on seven selected Atari games and Super
Mario Bros., with no extrinsic reward. (c) A comparison of different stabilization techniques for training FICM.

games are characterized by moving objects that require the agent to concentrate on and explore from.
As a result, they are favorable to the proposed methodology, as optical flow estimation is capable of
learning motion features and understanding the changes in observations in a more comprehensive
fashion. On the contrary, the proposed methodology does not deliver satisfactory results and perform
unstably in games BeamRider, Qbert, River Raid, and Space Invaders. These are primarily due to the
lack of movements of primary objects (e.g., enemies), or excessive changes of irrelevant components
(e.g., backgrounds) that distract the focus of FICM. FICM generates negligible intrinsic rewards if
the objects that the agent should pay attention to barely move (e.g., Space Invaders), since there is
only little discrepancy between two consecutive frames. On the other hand, if some irrelevant parts
of the environments move relatively faster than the agent (e.g., BeamRider), FICM may be distracted
to focus on incorrect regions or components, leading to unstable performance. The above results
suggest that the proposed method is preferable to the baselines in exploring certain environments.

3.3 ANALYSIS OF THE STABILIZATION TECHNIQUE

In this section, we discuss the stability issue of the proposed methodology, and analyze the techniques
for dealing with it. It is observed our method suffers from poor and unstable performances in a
few Atari game when the same set of hyper-parameters used for training FICM in the VizDoom
environment is employed. The results of Pong and Seaquest are plotted as the yellow curves in
Fig. 3 (c). We consider that the above issue is mainly caused by the imbalance of learning speed
between the agent and FICM. When FICM learns faster than the agent and transfers its attention (i.e.,
curiosity) quickly, the intrinsic rewards generated by FICM turn into an easily consumable resource,
causing the agent to fall behind and unable to explore and collect sufficient data samples to update its
policy. We propose two heuristics to balance the learning speeds of FICM and the agent by adjusting
the learning rate and the update period of FICM. In our experiments, we adopt two different choices
of the learning rate: 1e−4 and 1e−6. In addition, we examine two different update periods of FICM,
1 : 4 and 100 : 400, where the notation k1 : k2 indicates that the parameters of FICM are updated for
k1 iterations and fixed for k2 iterations. Fig. 3 (c) presents an ablative analysis of the two proposed
heuristics. In Fig. 3 (c), the fixed period k2 is assumed to be zero if not specified. It is observed
that decreasing the learning rate leads to obvious overall improvement. In addition, the existence of
the fixed period k2 also enhances the performance. According to our experiments, the combination
of learning rate 1e−6 and update period 1 : 4 tends to perform better in these two games. Further
investigations into the balancing issues are left as our future research directions.

4 CONCLUSIONS

In this paper, we proposed a flow-based intrinsic curiosity module (FICM) for evaluating the novelty
of observations in RL exploration. FICM employs optical flow estimation errors as a measure for
generating intrinsic rewards, which allow an RL agent to explore environments featuring moving
objects or with high-dimensional observation spaces in a more comprehensive and efficient manner.
We validated the proposed methodology and compared it against a number of baselines on Atari
games, Super Mario Bros., and ViZDoom. According to our experiments, we observed that the
proposed FICM is capable of focusing on important objects, and guiding the RL agent to deliver
superior performance to the baselines in certain environments. We further provided our insights into
the stabilization techniques of FICM, and analyzed the results of different hyper-parameter settings.
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