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ABSTRACT

Planning for robotic manipulation requires reasoning about the changes a robot
can affect on objects. When such interactions can be modelled analytically, as in
domains with rigid objects, efficient planning algorithms exist. However, in both
domestic and industrial domains, the objects of interest can be soft, or deformable,
and hard to model analytically. For such cases, we posit that a data-driven mod-
elling approach is more suitable. In recent years, progress in deep generative
models has produced methods that learn to ‘imagine’ plausible images from data.
Building on the recent Causal InfoGAN generative model, in this work we learn to
imagine goal-directed object manipulation directly from raw image data of self-
supervised interaction of the robot with the object. After learning, given a goal
observation of the system, our model can generate an imagined plan – a sequence
of images that transition the object into the desired goal. To execute the plan, we
use it as a reference trajectory to track with a visual servoing controller, which
we also learn from the data as an inverse dynamics model. In a simulated ma-
nipulation task, we show that separating the problem into visual planning and
visual tracking control is more sample efficient and more interpretable than alter-
native data-driven approaches. We further demonstrate preliminary robot results
on learning to imagine and execute deformable rope manipulation.

1 INTRODUCTION

The main difficulty in planning the manipulation of deformable objects is that, in contrast with rigid
objects, there is no obvious mapping from an observation of the object to a compact representation
in which planning can be performed. Thus, traditional task and motion planning approaches, which
require manual design of the predicates, preconditions, and effects in the problem, are difficult to
apply (McConachie et al. (2017); Srivastava et al. (2014)). In recent years, several studies have
proposed a data-driven, self-supervised paradigm for robotic manipulation (Agrawal et al. (2016);
Nair et al. (2017); Finn & Levine (2017)). In this approach, the robot ‘plays’ with the object using
some random manipulation policy (e.g., randomly grasping or poking an object), and collects per-
ceptual data about the interactions with the object. Later, machine learning is used to train a policy
that performs the task directly from the perceptual inputs. By relying directly on data, these ap-
proaches overcome the modelling challenges of classical planning approaches, and scale to handle
high-dimensional perceptual inputs such as raw images.

In this work we ask – can we learn to automatically generate the visual plan and follow it in a data-
driven way? Concretely, given the current image of the system and some desired goal observation,
we propose to generate a sequence of images that manipulate the object to the desired configuration,
without any human guidance, and then use this plan in conjunction with an inverse model for actually
manipulating the object.

However, learning visual planning directly from raw image data has so far been limited to very sim-
ple planning tasks, such as reaching or pushing rigid objects (Finn & Levine (2017); Ebert et al.
(2017)). In this work, we take a step towards learning complex visual planning for robotic manipu-
lation, by learning features that are compatible with a strong planning algorithm. At the basis of our
approach is the recent NeurIPS 2018 work, the Causal InfoGAN (CIGAN) model from Kurutach
et al. (2018). In CIGAN, a deep generative model is trained to predict the possible next states of
the object, with a constraint that linear trajectories in the latent state of the model produce feasible
observation sequences. Kurutach et al. (2018) used a CIGAN model for planning goal-directed tra-
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Figure 1: Visual planning and acting for rope manipulation. The PR2 robot first collects data through
self-supervised random rope manipulation, and learns from this a generative model for possible
visual transformations of the rope. Then, given a goal observation for the rope, we plan a visual
trajectory of a possible manipulation sequence that reaches the goal (shown on top). Finally, visual
servoing is used to execute the imagined plan.

jectories simply by linearly interpolating in the latent space, and then mapping the latent trajectory
to observations for generating the visual plan.

Building on CIGAN, we propose a method for visual planning and acting (VPA), where sensory data
obtained from self-supervised interaction is used to learn both a CIGAN model for visual planning
and an inverse model for tracking a visual plan. After learning, given a goal observation for the
system, we first use CIGAN to imagine a sequence of images that transition the system from its
current configuration towards the goal. Then, we use the imagined trajectory as a reference for
tracking using the inverse model.

We show that separating the control task into visual planning and visual tracking leads to an inter-
pretable decision making paradigm, which is also more sample efficient than data-driven methods
which learn actions directly from images.

2 VISUAL PLANNING AND ACTING

Our approach is model-based, where we first use the data D to learn both a CIGAN model MCIGAN
and an inverse dynamics model MIM. For any two start and goal observations ostart, ogoal, the
CIGAN model MCIGAN can generate a visual plan that transitions the system from start to goal,
ostart, o1, . . . , ok, ogoal. Since the CIGAN model is trained to generate feasible pairs of observa-
tions, we are guaranteed that the plan generated by a well-trained CIGAN model will be feasible, in
the sense that the robot can actually execute it.

Our Visual Planning and Acting (VPA) method for solving the goal directed planning problem is a
combination of planning and replanning using the CIGAN model MCIGAN, and trajectory tracking
using the inverse model MIM. The VPA algorithm is given as follows:

1. Plan: as in Kurutach et al. (2018), given a pair, ostart, ogoal, use the CIGAN model MCIGAN
to generate a planned sequence of observations ostart, o1, ..., om, ogoal.

2. Act: If the length of the plan m is zero, take an action u to reach the goal u =
MIM(ostart, ogoal), then stop. Else:

3. Take an action u to reach the first observation in the plan u = MIM(ostart, o1) and take a
new observation of the current system state onew.

4. Replan: update ostart to be the current observation onew, and go back to step 1.

The only data required is images taken from self-supervised manipulation of an object. Nevertheless,
our method enjoys the interpretability of model based methods – at every step of our algorithm we
have a visual plan of the proposed manipulation. We found that this allows us to reliably evaluate
the performance of VPA before performing any robot experiment, significantly reducing robot-time
and effort.
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Figure 2: Illustration of how the CIGAN model plan step works. First, start and goal images are
encoded to their latent representations (denoted here as points in the plane). Second, search is used
to find a sequence of points in the latent space that connect the start to the goal, while obeying the
latent space dynamics. Here we illustrate the result of A* search. Third, the plan in latent space is
decoded into a sequence of images using the generator, resulting in a visual plan.

2.1 CONTEXT CONDITIONAL CIGAN MODEL

For many problems of interest, such as the rope manipulation with dynamic obstacles we experiment
with, the domain can be decomposed into a manipulate-able, movable object (rope), and components
which are fixed during manipulation (obstacles). In such cases, training the CIGAN model to gen-
erate both movable and fixed components is unnecessary, since only the movable component can
change within an episode. Thus, we propose a modification of the CIGAN architecture that takes
as input an observation of the fixed components as a context vector. We term this model a Context
Conditional CIGAN (C3IGAN). More information about this model can be found in the appendix
in Section A.

3 EXPERIMENTS

We demonstrate our method on three domains. The first is a two-block world in Mujoco (Todorov
et al. (2012)). In this domain, we perform a comparison with batch off-policy RL – an alternative
method for learning a control policy from data. The second domain contains a movable block with
a static obstacle. In this domain, we show the need for planning when the inverse model fails to
navigate around the obstacle, while VPA learns to do so. Finally, we deploy the algorithm on a PR2
robot to manipulate a deformable rope around obstacles. Within real world rope manipulation, we
explore two similar variations of the domain: one with static obstacles in which we compare our
method to that of Nair et al. (2017), and the other with dynamic obstacles in which we demonstrate
the potential of generalizing to variations in the environment using C3IGAN.

3.1 TWO-BLOCK DOMAIN

In this domain, the task is to move two rigid blocks on a table to some goal location.

We compare VPA with an alternative data-driven approach based on model-free batch RL, namely,
fitted Q-iteration (Riedmiller (2005)). This is a strong baseline, that makes use of both the action-
labeled and unlabled data, and incorporates several recent techniques for image-based RL. However,
as stated earlier, RL is known to have difficulties with large state spaces (image), reward specifica-
tion, and sample efficiency. To demonstrate this, we also run RL with several artificial benefits:
(1) simple state space – true positions of the blocks, (2) true reward – based on real distance to
target, and (3) more data – 30k action-labeled samples. Our results, reported in Table 1 show that,
surprisingly, VPA significantly outperforms RL even with the artificial benefits.

3.2 BLOCK-WALL DOMAIN

We further investigate the efficacy of our model on another simulated domain, now with planning
more intuitively necessary to complete the task. In this domain, the agent has to manipulate a green
block around a red vertical obstacle.

We compare two variations of our method against the baseline of using only an inverse model,
as suggested by Nair et al. (2017). The first method executes 100 different generated plans from
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Table 1: VPA vs. Batch RL on block moving task. We show the average final L2 distance to goal
and the success rate to move two blocks to be within 0.5 radius to the goal when executed on 50 new
tasks.

Method L2 distance Success Rate
VPA (2k) 0.335 ±0.121 90%

Batch RL (positions, real r, 2k) 0.657 ±0.701 76%
Batch RL (positions, real r, 30k) 0.675 ±0.739 74%

Batch RL (image, real r, 2k) 1.172 ±0.991 16%
Batch RL (image, real r, 30k) 1.186 ±0.940 42%

Batch RL (image, embedded r, 2k) 1.346 ±0.891 14%
Batch RL (image, embedded r, 30k) 1.445 ±1.096 18%

Figure 3: Comparison between VPA and an inverse model baseline. The baseline attempts to directly
apply the inverse model on the goal, while our method employs the plan generated by CIGAN,
shown center, to navigate from start to goal. Without a plan, the baseline blindly attempts to move
the block downwards without knowledge that there is an obstacle in the way, whereas our model
has gained the intuition that the block cannot pass through walls and thus any feasible plan must go
around the obstacle.

CIGAN in the simulated environment and selects the minimum L2-distance execution. The second
executes just 1 generated plan, which is selected using a combination of a classifier trained on the
dataset and an object detector, where we use Mask-RCNN trained on a simple shape dataset and
reward pairs of images that have the desired number of objects He et al. (2018).

Table 2: VPA vs. inverse model on block-wall task. The average final L2 distance to goal and the
success rate to move one block in the block-wall domain to be within 0.5 radius of the goal.

Method L2 distance Success Rate
Baseline 0.459 ±0.433 45%

VPA (minimum selected out of 100 plans) 0.023 ±0.033 100%
VPA (autoselected 1 plan) 0.131 ±0.242 90%

3.3 REAL ROBOT ROPE MANIPULATION DOMAIN

And finally, we bring our method out of simulation and into the real world by conducting experi-
ments with a PR2 robot manipulating a flexible rope that is fixed on one end and can move between
two obstacles. This domain is inspired by wire threading – an important industrial task that is ex-
tremely challenging for autonomous robots.

3.3.1 STATIC OBSTACLES

We begin our investigation by comparing our planning based method to same baseline of only using
an inverse model without planning, as in the previous block and wall domain. With the additional
constraint of obstacles, we conjecture that the inverse model, which is essentially reactive in its
computation, will not suffice to plan movements that involve these obstacles.

In Figure 4, we demonstrate a setting where indeed planning is required to solve the task. In this
example, going from start to goal requires traveling with the rope around the obstacle. It can be seen
that our VPA method plans to go around the obstacle, which makes it feasible to solve the task by
following the plan with the inverse model. Just using the MIM, however, does not result in planning
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Figure 4: Comparison between VPA and an inverse model baseline. In this example, the rope is
required to travel around an obstacle to reach the goal. The CIGAN-generated plan is presented
in grayscale in the middle. The results after the PR2 robot successfully runs iterations of the MIM
with our VPA method by tracking the plan is shown above, and the baseline of only the inverse
model, MIM is shown below (similar to the method of Nair et al. (2017)). Note that VPA plans to go
around the obstacle, leading to a successful plan execution, while the inverse model is not capable
of such planning, due to its reactive, short-term nature, and therefore cannot complete the task. This
example demonstrates the importance of planning for nontrivial manipulation tasks.

around the obstacle, which leads to a failure in execution. Further plans can be seen in the appendix
in Figure 8

3.3.2 DYNAMIC OBSTACLES

In this section we demonstrate the potential of C3IGAN in generalizing to unseen environments. To
this end, we modified the rope manipulation domain to include dynamic, smaller obstacles, which
were intermittently moved (manually) while collecting the training data. These changes render this
variation harder than the previous one for our vision-based planning method. Our hope is that our
model can imagine, plan, and execute rope manipulation in domains with obstacle configurations
that were not explicitly seen during training.

In terms of success rate, we qualitatively inspected the plans and found that approximately 15%
were visually accurate representations of rope manipulation. The most common failure cases are
inaccurate encoding, leading to a misspecified goal image, or the rope breaking during the trajectory.
We believe that more data and further improvements to C3IGAN would significantly improve these
results. From the visually correct plans, the inverse model was able to successfully execute 20%.
This is somewhat worse than the results of Nair et al. (2017), which we attribute to the order of
magnitude smaller data set we used, and our additional obstacles. We emphasize that even though
our success rates are not high, our method is interpretable, and many failure cases can be caught by
visual inspection, without running the robot. We see these results as a proof of concept for a new
paradigm for robot manipulation.

Figure 5: 5 examples of VPA executed on the rope domain. The first 4 are successful runs, and the
last 1 is where a plan is generated to reach the goal, but the action policy is not strong enough to
carry it out. Looking at one column at a time, the top image is the start state and the bottom is the
goal state. In the middle, the grayscale images are the visualized plan, and the colored images are
the actual results of the rope when we run the inverse model to have the PR2 take actions.
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A C3IGAN MODEL

In C3IGAN, as shown in Figure 6, the generator takes in as input z, s, s′, c, where the context c
represents an image of the fixed components in the domain, so in our case, the obstacles (obst). The
generated observations are added (pixel-wise) to c before they are passed onto the discriminator. In
this way the generator is trained to generate only the movable part in the scene. Thus, the generator
is now only in charge of generating the images of the rope, and not the obstacles. By relieving the
generator of the responsibility of generating a fixed backdrop that is fixed throughout a trajectory, it
can focus on the nuances of the object whose movement we actually want to control. The generator
in this model is also able to generalize to new obstacle domains not seen during training. It is clear
how this model could extend to other applications where there is a fixed background to interact with,
such as a maze or other physical barriers.

Figure 6: C3IGAN Model Architecture

B ADDITIONAL RESULTS

Figure 7: Top image: Imagined plan by Causal InfoGAN in two block domain. Start and Goal image
are both oclosest to the actual ostart and ogoal, which are shown right below them. Bottom image:
Images showing the actual successful results of running entire VPA pipeline on Mujoco
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Figure 8: Demonstration of CIGAN plans for the rope domain with fixed obstacles. The top row
shows the start states and the bottom row shows the goal states of 4 different problems given to the
CIGAN. The middle 4 columns show sample generated plans. Note the realistic transitions of the
rope around the obstacles, which obey physical properties of the rope such as being stretched when
pulled from the end.
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