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ABSTRACT

Automatic curriculum generation involves generating a sequence of tasks with-
out requiring expert demonstrations or any form of reward shaping. Since hand
designing reward functions are difficult in practice, curriculum learning allevi-
ates this problem by generating multiple subtasks, often defined by goals and a
simpler reward function. Most practical approaches to curriculum learning often
involves training a separate model to generate goals or subtasks. We propose an
approach that requires no external models to generate a curriculum in a continuous
task space. We propose a simple technique for curriculum generation by random
task perturbations in continuous task parameterization. We demonstrate this in the
context of goal-conditioned policies and show that our approach is on par with a
method that uses a generative model to generate new goals.

1 INTRODUCTION

Reinforcement learning algorithms has had several recent successes, ranging from solving the game
of Go (Silver et al., 2016) to efficiently solving Atari games mnih2015humanlevel to robotic control
and manipulation DBLP:journals/corr/LillicrapHPHETS15. In most of these domains, the inherent
assumption is that the goal of the agent is to maximize the cumulative return objective based on a
single reward function. However, a long lasting goal of AI is for agents to simultaneously solve
multiple tasks and be able to transfer domain knowledge from one task to another without additional
computational complexity. Solving multiple tasks in a multi-task learning setup often poses chal-
lenges due to the requirement of re-defining the objective function to maximize several objectives.

Curriculum learning has been proposed to efficiently solve multiple tasks sequentially. It involves
having a predefined (Bengio et al., 2009) or a learned (Graves et al., 2017) schedule to generate a set
of related multiple tasks, to break down a difficult problem into easier smaller problems. Recently an
automatic curriculum generation procedure for Reinforcement Learning agents has been proposed in
Florensa et al. (2018) using goal conditioned policies (Kaelbling, 1993; Schaul et al., 2015b). Often
goal conditioned methods allow for tasks to be specified using a collection of goals and simpler
the reward functions characterized by the goals. Therefore, goal conditioned methods are suited for
tasks in which specifying an appropriate reward function is tedious. As such, curriculum learning
also helps in sparse reward challenging exploration problems where the set of generated related tasks
can guide the agent towards an effective exploration strategy. Often, a good exploration strategy
relies on identifying or discovering the task structure, and be able to exploit the task structure. We
focus in the context of multi-task learning where the agent can solve multiple tasks at the same
time, through the perspective of automatic curriculum learning. We propose that an efficient way
to solve multiple tasks also relies on good exploration strategies as the agent should identify useful
substructures within the environment, where each sub-task has its own reward function. Towards this
goal, we propose a surprisingly simple approach towards efficient curriculum generation in a multi-
task learning context that results in efficient exploration using goal conditioned policies where the
agent can generate its own reward functions through goals and solve these subtasks which naturally
leads to efficient exploration of the environment.
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Unlike previous works (Florensa et al. (2018), Florensa et al. (2017)) which requires additional
complexity, we propose a simple approach of random perturbations of automatically generated goals
to generate new goals. We show that by using goal conditioned policies and reward functions specific
to a given goal, a natural way towards exploration is to randomly perturb the goals and generate new
goals. This leads to random reward functions being generated through perturbations, and the goal
of the agent is to solve all the generated goals in a multi-task learning setup. Our work is similar to
previous work on automatic goal generation setups as in Florensa et al. (2018), but instead of using
a generative model such as GAN (Goodfellow et al., 2014) to generate goals, we hypothesize that
a simple curriculum generation strategy is to generate new goals by randomly perturbing current
goals. In our experiments, following a similar setup as in Florensa et al. (2018), we show that our
simple strategy can work quite effectively in complex maze continuous control tasks.

2 PRELIMINARIES

We consider the reinforcement learning setup where the goal of the agent is to maximize cumulative
returns J(π) =

∑∞
t=0 γ

trt. In this work, we consider goal conditioned policies π(a|s, g) which
are often introduced to provide additional information to policies, as in Universal Value Functions
(UVFs) and several recent works considering latent or goal conditioned policies (Goyal et al., 2019).
In a multi-task learning objective, often the goal space defines a subtask that is required for the agent
to solve, where the goals are either part of the state space or generated by a trained generative model
(Nair et al., 2018; Florensa et al., 2018), including VAEs (Kingma & Welling, 2014) or GANs.
Several work has also recently looked at curriculum learning objectives, or in a student teacher
framework where the goal of the teacher is to provide useful training signals for the student to solve
multiple tasks.

Automatic Goal Generation using GAN : We propose that goals generated by perturbing the
current goals provide useful signals for the agent to increasingly improve by solving multiple tasks
defined by the reward functions. We detail our approach in the next section, which is based on
Florensa et al. (2018) and so we briefly review it here. The reward function rg , parameterized by the
goal g, is an indicator function where rg(s) = 1 if s = g and 0 otherwise. The advantage of using
indicator reward function is that no prior knowledge about the task is required other than being able
to determine whether the goal has been reached or not. In continuous goal spaces the probability
of exactly reaching any particular goal is 0 and hence rg in this case is defined as rg(s) = 1 if
d(s, g) < ε, where d is a distance metric in the goal space and ε is a threshold. The indicator
reward function enables the interpretation of the undiscounted return,Rg =

∑T
t=1 r

g
t , as a bernoulli

random variable indicating whether the policy has achieved its task of reaching the specified goal.

The overall objective is to find a policy π∗(a|(s, g)) that is optimal for all goals g ∈ G drawn
according to a test distribution D(g) i.e find a policy π∗ s.t π∗ = arg maxπ Eg∼Dg

[Rg(π)]. The
test distribution D(g) is assumed to be uniform over G. Training the agent by sampling the goals
uniformly from Dg leads to significantly slower learning since initially the majority of the goals
will be beyond the capability of the agent and hence returns are sparse leading to slower progress
as shown in Florensa et al. (2018). Therefore it is desirable to have a curriculum that progressively
increases the difficulty of the goals. In order to push the frontier of the agent’s capabilities it is
necessary to train on goals that have not been previously learned to achieve but such goals must not
be too difficult for the current ability of the agent, which will otherwise result in poor training signal.
In order to balance this trade-off, a notion of Goals of Intermediate Difficulty (GOID) is introduced
in Florensa et al. (2018) as explained below.

Goal Labeling and Goal Generation : GOID goals are defined as the goals which are reached
with probability ∈ [successmin, successmax] where 0 < successmin < successmax < 1 are the
minimum and maximum probabilities of successfully achieving the goal under the current policy
respectively. New GOID goals are generated by sampling from a GAN trained to generate the
GOID goals. The goals are then labeled as easy, GOID and difficult goals when the probability of
reaching the goal is [0, successmin), [successmin, successmax] and (successmax, 1] respectively.
Two approaches to compute the probability of reaching a goal given in Florensa et al. (2018) are as
follows: (i) For each goal, perform multiple rollouts following the current policy to compute the
probability of achieving the goal. These trajectories are not used in policy optimization and (ii) for
each goal, use the trajectories used in the previous iteration of policy optimization to compute the
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probability of achieving the goal. In order to avoid catastrophic forgetting, a fixed proportion of easy
goals are used along with the GOID goals in the policy optimization phase. After the goal labeling
phase, a GAN is trained using the GOID goals and new goals are generated by sampling from the
GAN.

3 PROPOSED METHOD

Our objective is to train an agent in a curriculum learning setting, without introducing additional
complexity in generating a set of tasks. We propose to use goal conditioned policies in the multi-
task learning setup, with the objective to maximize cumulative returns along the set of tasks. Several
works have proposed using goal conditioned policies or value functions, either as an intrinsic reward
or curiosity based objective Burda et al. (2018), or in a multi-task learning setup (Goyal et al.,
2019). We extend the recent work from Florensa et al. (2018) to use goal conditioned policies in
the curriculum learning setup. In most recent works, the way to generate the goals has been to
use generative models to generate goals (Florensa et al., 2018) (Nair et al., 2018).We develop a
simple approach based on the intuition of random perturbations to generate new set of tasks, where
each task is rewarding for the agent to solve in a curriculum learning setup. We hypothesize that
the following are key properties to generating goals for multi-task learning, and demonstrate that
the following desired properties can be achieved using a non-stationary buffer to store the goals in
tandem with goal perturbation. A detailed description of the algorithm and non-stationary replay
buffer is provided in the next section.

Non-Stationarity: We require a non-stationary process to generate goals that are suited to the agent’s
current capabilities, and ensure not to generate goals that has already been learned by the agent. This
is crucial to ensure that the generated goals aid in expanding the agent’s capability.
Local Interpolation: In order to generate goals that are of similar difficulty to GOID goals and
generalize to nearby goals, it is necessary to have a local interpolation of the goals but also avoid
global interpolation such as interpolation between modes since such goals might be infeasible and
therefore result in wasted training capacity.
Stability: To avoid the sub-optimal solution of focusing on only a part of the goal space that is more
likely under the current policy and avoid specialization in only that regions of the goal space that
are likely under the current policy, we need to ensure that the new goals generation must enable
exploration in all the regions of the goal space previously visited. To achieve this end, the goal
generation process must be insensitive changes in policy.

3.1 GOAL GENERATION USING A GOAL BUFFER

To generate goals using a buffer, we employ 2 separate buffers to store easy goals and to storeGOID
goals respectively. The agent is trained using a fixed proportion of the easy goals and GOID goals
in order to avoid catastrophic forgetting while attempting to expand its abilities. GOID goals buffer
is used to store goals that are of intermediate difficulty and also to generate new goals by applying
perturbations to the sampled goals. The implementation of the easy goals buffer is an ordinary list
but the GOID buffer is designed to satisfy all of the properties desired from a generative models
using the following techniques:

Non-stationarity and Stability: Maintaining a balance between non-stationarity and stability is a
trade-off that we have to balance. It is a trade-off because having a infinitely long buffer provides
maximum stability but not non-stationarity whereas a a buffer of size 1 provides maximum non-
stationarity but no stability. In order to ensure non-stationarity, it is necessary to discard the goals
that were GOID goals several iterations ago since such goals would have been learned to be solved.
The simplest mechanism to discard old goals is to implement a fixed size queue i.e use a first-in first-
out policy to discard the goals from the buffer. However, without any restrictions on the number of
goals inserted, the entire buffer can get replaced if the number of new goals is greater the maximum
capacity of the queue and therefore cause instability. Hence, it is necessary to restrict the number of
new goals that can be inserted into the buffer in each iteration in order to ensure stability.

Local interpolation: An efficient curriculum is one in which the difficult of the tasks presented
to the agent are increased progressively and are therefore are near the agent’s current capabilities.
Therefore, in order to progressively increase the difficulty of the goals, it is desirable to generate
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new goals that are close to the GOID goals. In the case of a continuous parameterization of the
goal space, this can be achieved by adding noise to the GOID goals. In order to achieve this, we
have made the sampling from the replay buffer to be noisy i.e a few goals are sampled from the
buffer and a small perturbation is applied to the sampled goals to generate new goals. Therefore, our
GOID buffer is a queue of fixed size with the restriction of only updating a fraction of the goals in
each iteration and the new GOID goal generation is achieved by simply sampling from the GOID
buffer followed by the addition of a small noise. Adding noise in this manner, like using a generative
model, may result in the generation of infeasible states but those states are subsequently filtered out
due the labeling phase.

3.2 POLICY OPTIMIZATION

For training π(a|s, g), we uniformly sample a fixed proportion of easy and GOID goals from the
buffers every K iterations and then sample a goal among the chosen goals for a given episode. We
use a policy optimization based objective, such as TRPO Schulman et al. (2015) and after K steps
of policy optimization, the goals are labeled as easy, hard or GOID goals. The easy goals and the
GOID goals are stored in their respective buffers and the hard goals are discarded. The labeling
procedure helps eliminate the unfeasible goals generated by applying of noise to the GOID goals
and also eliminate goals that are reliably solved so that the boundaries of the agent’s capabilities are
progessively pushed. Our training loop is shown below:

procedure TRAIN Input: π0 Output: πfinal
trajectories← trajectories generated according to π0
GOID goals buffer← Goals derived from the trajectories . {transform states to goals}

easy goals buffer← Φ . {empty list}
for i← 1 to N do

sample goid goals← sample from goid goals buffer . {as shown in Algorithm 2}
sample easy goals← sample from easy goals buffer
all goals← concatenate(sample goid goals, sample easy goals)
πi ← train policy(πi−1, all goals) . {Perform K iterations of policy optimization by
conditioning the policy in each episode on a goal sampled uniformly from all goals }
labels← label each goal in all goals as easy, hard and GOID goals
goid goals← select GOID goals from all goals using labels
easy goals← select easy goals from all goals using labels
goid goals buffer← update goid goals buffer (goid goals) . {as shown in Algorithm 1}
easy goals buffer← update easy goals buffer (easy goals)

end

4 EXPERIMENTAL RESULTS

We evaluate our proposed method for automatic generation of curriculum via task perturbations, on a
range of continuous control MuJoCo (Todorov et al., 2012) tasks . We follow a similar experimental
procedure as Florensa et al. (2018), where in two of the environments, the agent is an ant with 41
dimensional state space placed in an open or U-shaped 2D maze in a [−5, 5]2 grid. In the third
experiment, we use a point-mass agent with 4 dimensional state space placed in an enclosed 2D
maze as shown in Fig 4. A detailed description of the environments can be found in Florensa et al.
(2018) and Duan et al. (2016). The goal space is the (x, y) coordinates denoting the position of the
center of mass of the agent in the maze. The objective in all the tasks is to be able to reach any
specified goal in the goal space and the performance of the agent is measured by the proportion of
the maze area reachable by agent, known as the coverage of the maze, when conditioned on goals
from those regions. In all these environments, the goal is considered reached when the COM of the
agent is within an εr−ball of the goal.

We highlight that the key benefit of our approach is that we do not need to train a separate generative
model for task generation, and experimentally demonstrate that very similar performance can in
fact be achieved by perturbation of the goals as show in Figure 3. The only case where there is a
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notable difference between using a GAN and task perturbation is in the Maze Ant environment using
separate rollouts to label the goals. Since, using separate rollouts to label the goals is ineffective,
it is unlikely the case the to be used in practice. Figures 1 and 2 demonstrates the non-stationarity
of the GOID buffer. The green goals near the the starting positions are due to the goals from the
easy goals buffer. It can be seen that the GOID goals generated from the GOID buffer progressively
moves away from the starting region, resulting in pushing the agent’s frontier. The goals generated
by local perturbations are robust to the case of multimodal goal distribution as shown in Figure 4
(d).

In order to show that stability of the GOID buffer is crucial and being sensitive to changes in the
policy will lead to a sub-optimal performance, we experiment with the case of generating goals
that is dependent entirely on the current policy. This is done by generating new goals from the
trajectories visited by the policy by sampling the states visited by the policy during the optimization
phase in the previous iteration. We show that in the Free Ant environment, generating goals in this
manner results in sub-optimal exploration of the maze as show in Figure 5. Further experimental
results are given in Appendix.

(a) Itr 1 (b) Itr 50 (c) Itr 150 (d) Itr 250 (e) Itr 1 (f) Itr 50 (g) Itr 150 (h) Itr 250

Figure 1: Free Ant: (a) - (d) shows the evolution of the coverage of the maze. The agent reaches the
goals in the brown region with probability 1 and never achieves goals in the blue region. (e) - (h)
shows the evolution of the new goals generated for the agent along with the goals from easy goals
buffer. Green indicates easy goals, Blue indicates GOID goals and red indicates difficult goals

(a) It1 1 (b) Itr 50 (c) Itr 150 (d) Itr 300 (e) Itr 1 (f) Itr 50 (g) Itr 150 (h) Itr 300

Figure 2: Maze Ant: Evolution of the coverage and goals provided to the agent

(a) Free Ant (b) Maze Ant (c) Multipath Point-Mass

Figure 3: Coverage Plots: All the experiments are averaged over 5 random seeds. gan indicates
that the goals were generated using GoalGAN, perturbation indicates that goals were generated by
perturbing the goals, rollouts:True indicates that goals are labeled performing 4 rollouts for each goal
and rollouts:False indicates that goals are labeled using the trajectories used in policy optimization.
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5 CONCLUSION AND FUTURE WORK

In this work, we propose a simple approach towards curriculum learning, based on random task per-
turbations in continuous task parameterization. We demonstrate that instead of learning a generative
model to generate new related tasks in curriculum, we can instead add random perturbations to ex-
isting tasks to sequentially generate a series of related tasks. Our experiments demonstrate that this
approach can work equally well, or in some cases, better than using generative models in curricu-
lum learning. In future, we aim to study methods to generate continuous representation of tasks and
evaluate whether such representation is amenable to curriculum generation through perturbations.
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A ADDITIONAL EXPERIMENTAL DETAILS

We use TRPO with GAE as the policy optimization algorithm and train the agent for 500 outer
iterations (corresponding toN in 3.2). In each outer iteration, the policy optimization phase consists
of 5 inner iterations and in each inner iteration 100, 000 samples and 20, 000 samples for the ant
and multi-path point-mass agents respectively are collected to perform policy optimization. The
maximum horizon of each episode is 500 and 400 for ant and point-mass agents respectively. In
each outer iteration, we sample 100 easy goals and 200 GOID goals. We bootstrap our method by
generating the initial goals by performing rollouts according to a random policy and subsample 200
goals from the collected random goals and label them. Using the labels we fill the easy and GOID
goals buffer with the respective goals. The architecture used for policy optimization is a 2 layer
neural network with 32 hidden units and tanh non-linearity and the discount factor is 0.998 and
GAEλ = 0.995. The terminal ε for ant and point-mass agents are 1 and 0.3 respectively and the
noise added to perturb the goals is gaussian noise of 0 mean and 0.5 variance. The maximum buffer
size is 300 and the number of goals added in each iteration is 30.

(a) Iteration 1 (b) Iteration 10 (c) Iteration 50 (d) Multimodal GOID
goals

Figure 4: Evolution of the goals in Multi-path point-mass: Green indicates easy goals, Blue indicates
GOID goals and red indicates difficult goals

(a) Iteration 1 (b) Iteration 50 (c) Iteration 150 (d) Iteration 250

Figure 5: Suboptimal coverage by generating goals from the trajectories

Environment GoalGAN (rollout) GoalGAN Perturbation (rollout) Perturbation
Maze Ant 0.59 0.55 0.55 0.54
Free Ant 0.88 0.8 0.88 0.91
Multipath Point Mass 0.85 0.91 0.93 0.93

Table 1: Summary of the results

B GOID GOAL BUFFER UPDATE

We highlight that the when goals are inserted to the goal buffers, only goals that are at least εr away
from goals present in the buffer are inserted. There are two benefits of using such an approach: a)
reduced memory requirement and b) it can interpreted as making the goal distribution within the
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buffer to be uniform since any information about the distribution of the goals to be inserted are
discarded due to the filtering by distance.

Algorithm 1
Algorithm 1: Update GOID buffer

global variables
GOID goals buffer . {stored GOID goals}
MAX size . {maximum size of GOID goals buffer}
#max new goals . {maximum number of goals appended in one iteration}

end global variables

procedure UPDATE
Input: GOID goals, εr . {εr is the minimum distance between two goals in the buffer}

# inserted goals← 0
for for each goal in GOID goals do

if distance(goal, GOID goals buffer) ≥εr then
insert goal to GOID goals buffer
#inserted goals←#inserted goals + 1
if # inserted goals ≥ #max new goals then

exit loop
end

end
end
if size(GOID goals buffer) > MAX Size then

selectedgoals← Uniformly sample size(GOID goals buffer)−MAX Size goals
discard selected goals

end

C GENERATE NEW GOID GOALS

Algorithm 2
Algorithm 2: Sample from GOID buffer

global variables
GOID goals buffer . {stored GOID goals}

end global variables

procedure SAMPLE
Input: n, noise . {noise of each component}
Output: GOID goals

selected goals← uniformly sample n goals from GOID goals buffer
selected goals← selected goals + noise
return selected goals

D RELATED WORK

The need for conditioning policies on the goal information has been pointed in several works, where
the goal information can be used to identify useful subgoals or exploiting the task structure of the
environment. UVFAs Schaul et al. (2015b) has been proposed previously where conditioning the
value functions on the goal information has also been shown to be extremely useful to share the
semantics of the value function across several tasks, and several works built up from that, including
HER (Andrychowicz et al., 2017). Often goal conditioned policies were also introduced from the
information bottleneck perspective, looking at the mutual information between states and goals to
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identify useful subgoals and provide this as a form of intrinsic motivation or exploration bonus for
efficient transfer and exploration (Goyal et al., 2019).

Goal conditioned policies have also been proposed previously as a form of intrinsic motivation
Schaul et al. (2015a) or as a measure of curiosity Burda et al. (2018). Recent approaches include
the discovery of bottleneck states (Goyal et al., 2019) or learning a feature space (François-Lavet
et al., 2018). Exploration can also be formulated of as an agents internal drive towards learning
more about the environment. This is often defined as intrinsic motivation, or curiosity of the agent
(Pathak et al., 2017; Schmidhuber, 1990). Curiosity or intrinsic motivation can therefore be thought
of as a task agnostic exploration heuristic towards the goal of learning in an online fashion based on
the agents interactions with the environment.

Exploration can also be seen from the perspective of automatic curriculum generation. By being able
to generate subtasks or subgoals for the agent to solve, by using generative models such as GANs as
in Florensa et al. (2018), the agent can also discover efficient exploration strategies in a multi-task
learning setup. Curriculum learning has gained recent interest, due to the ability to solve multiple
tasks at the same time, and being able to use prior knowledge from these tasks for transfer. This has
also be explored in the framework of self-play (Sukhbaatar et al., 2017), where the agent generates
objectives to itself (as a form of intrinsic motivation) and tries to outperform these objectives in a
progressive manner. This can also be viewed as the agent providing itself a form of exploration
bonus to solve the single reward function tasks faster.
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