
Presented at the Task-agnostic Reinforcement Learning Workshop at ICLR 2019

DYNAMICS-AWARE UNSUPERVISED SKILL
DISCOVERY

Archit Sharma, Shane Gu, Sergey Levine, Vikash Kumar, Karol Hausman
Google Brain
{architsh,shanegu,karolhausman,slevine,vikashplus}@google.com

ABSTRACT

Model-based Reinforcement Learning (MBRL) shows the potential to facilitate
learning of many different tasks by taking advantage of the learned model of the
world. Learning a global model that works in every part of state-space, however,
can be exceedingly challenging, especially in complex, dynamical environments.
To overcome this problem, we present a method that is able to discover skills to-
gether with their ‘skill dynamics models’ in an unsupervised fashion. By finding
the skills whose dynamics are easier to learn, we are able to effectively partition
the space into local models and their corresponding policies. In addition, we show
how a simple MBRL algorithm can leverage the learned skills to solve a set of
downstream task without any additional learning. Our results indicate that our
zero-shot online planning method that uses skill dynamics can significantly out-
perform strong baselines that were trained specifically on downstream tasks.

1 INTRODUCTION AND RELATED WORK

Deep reinforcement learning enables autonomous learning of diverse and complex tasks with rich
sensory inputs, temporally extended goals, and challenging dynamics, such as discrete game-playing
domains (Mnih et al., 2013; Silver et al., 2016), and continuous control domains including locomo-
tion (Schulman et al., 2015; Heess et al., 2017) and manipulation (Rajeswaran et al., 2017; Kalash-
nikov et al., 2018; Gu et al., 2017). Classically, reinforcement learning is concerned with learning
one task at a time. In contrast, model-based reinforcement learning methods (Li & Todorov, 2004;
Deisenroth & Rasmussen, 2011; Watter et al., 2015) can in principle acquire dynamics models that
can then be utilized to perform new tasks at test time. Indeed, this capability has been demonstrated
in several recent works (Levine et al., 2016; Nagabandi et al., 2018; Chua et al., 2018; Kurutach
et al., 2018; Ha & Schmidhuber, 2018). But this kind of generality comes at a price: model-based
RL methods must acquire an accurate global model of the system, which can be exceedingly chal-
lenging when the dynamics are complex and discontinuous, or when the observation space is high-
dimensional. Can we retain the flexibility of model-based RL, while still making use of model-free
RL to acquire proficient low-level behaviors under complex dynamics?

In this paper, we propose an unsupervised hierarchical RL framework for learning low-level skills
using model-free RL with the explicit aim of making model-based control easy. Our skills directly
optimize for predictability, providing a substantially better representation on top of which predictive
models can be learned. Crucially, the skills do not require any supervision to learn, and are acquired
entirely through autonomous exploration. This means that the repertoire of skills and their predictive
model can be learned before the agent has been tasked with any goal or reward function. When
a reward is provided at test-time, the agent can utilize its previously learned skills and model to
immediately perform the task without further training.

Central to our method is the concept of skill discovery via mutual information maximization. This
principle, proposed in prior work that utilized purely model-free unsupervised RL methods (Daniel
et al., 2012; Florensa et al., 2017; Eysenbach et al., 2018; Gregor et al., 2016), aims to learn diverse
skills via a discriminability objective: a good set of skills is one where it is easy to distinguish the
skills from each other, which means they perform distinct tasks and cover the space of possible
behaviors. Building on this prior work, we distinguish our skills based on their corresponding pre-
dictive models – that is, skills are good if they can be distinguished based on how they modify the
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original uncontrolled dynamics of the system. This simultaneously encourages the skills to be both
diverse and predictable. Such skills can also provide extended actions and temporal abstraction,
which enable more efficient exploration for the agent to solve various tasks, as shown in other hi-
erarchical RL approaches (Sutton et al., 1999; Bacon et al., 2017; Vezhnevets et al., 2017; Nachum
et al., 2018; Hausman et al., 2018). Crucially, our method allows learning action and temporal ab-
straction, skill dynamics, and intrinsic motivation, all through a single optimization objective. We
demonstrate the effectiveness of our approach by performing zero-shot goal navigation for ant using
primitives learnt by our proposed objectives.

2 UNSUPERVISED LEARNING OF DYNAMICS-AWARE SKILLS

z

a1

s1

a2

s2

aT

sT

. . .

. . .

Figure 1: Graphical model for the world P in
which the trajectories are generated while inter-
acting with the environment. Shaded nodes rep-
resent the distributions we optimize.
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Figure 2: Graphical model for the world Q
which is the desired representation of the world.

We assume the conventional Markov Decision Process (MDP) setting for RL. While we focus on
the continuous control domain, this discussion does not preclude discrete control domains. At each
time step t, the environment E emits a state st ∈ Rds . The agent takes an action at ∈ Rda that is
sampled from the control policy parameterized as π(at|st, z). Here, z represents the latent space for
skills or primitives, which can be discrete or continuous. We assume a continuous z ∈ Rdz for the
rest of this section. The underlying dynamics of the environment are represented by p(st+1|st, at),
starting with an initial state distribution of p(s1).

Our method consists of two phases – Unsupervised Skill Discovery, and Planning. During Unsuper-
vised Skill Discovery we optimize the control policy to discover diverse behaviors in the environment
without any extrinsic rewards. More importantly, the objective is constructed to simultaneously learn
a transition function qφ(s′ | s, z), coined as skill dynamics. For downstream Planning on a given
task, we leverage the skill-dynamics to compose the learnt primitives. As long as the underlying
dynamics of the environment are the same, the downstream task can have any reward function.

2.1 UNSUPERVISED SKILL DISCOVERY

We take the probabilistic route to obtain our unsupervised RL objective. We setup a graphical model
P as shown in Figure 1, which represents the distribution of trajectories generated by a given policy
π. The joint distribution is given by:

p(s1, a1 . . . aT−1, sT , z) = p(z)p(s1)

T−1∏
t=1

π(at|st, z)p(st+1|st, at).

We setup another graphical model Q, which represents the desired model of the world. In particular,
we are interested in approximating p(s′|s, z), which represents the transition function for a particular
primitive. The joint distribution for Q shown in Figure 2 is given by:

q(s1, . . . sT , z) = p(z)p(s1)

T−1∏
t=1

q(st+1|st, z).

The goal of our approach is to optimize the distribution π(a|s, z) in the graphical model P to min-
imize the information lost when transforming to the representation of the graphical model Q. In
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particular, we are interested in minimizing the KL divergence between p and q - DKL(p||q). How-
ever, since q is not known apriori, we setup the objective as minq∈QDKL(p||q), which is the reverse
information projection (Csiszár & Matus (2003)). Interestingly, it was shown in Friedman et al.
(2001) that:

min
q
DKL(p||q) = IP − IQ,

where IP and IQ represents the multi-information for distribution P on the respective graphical
models. The multi-information (Slonim et al. (2005)) for a graphical model G with nodes gi is
defined as:

IG =
∑
i

I(gi;Pa(gi)),

where Pa(gi) denotes the nodes upon which gi has conditional dependence in G. Using this defini-
tion, we can compute the multi-information terms:

IP =

T∑
t=1

I(at; {st, z}) +
T∑
t=2

I(st; {st−1, at−1}) and IQ =

T∑
t=2

I(st; {st−1, z}).

Here, I(st; {st−1, at−1}) is constant as we assume the underlying dynamics to be fixed (and un-
known), and we can safely ignore this term. The final objective to be maximized is given by:

R(π) =

T−1∑
t=1

I(st+1; {st, z})− I(at; {st, z})

=

T−1∑
t=1

Eπ
[
log

p(st+1|st, z)
p(st+1)

− log
π(at|st, z)
π(at)

]
.

We can leverage the fact that
∫
π(a) log π(a)

p(a) da ≥ 0 for some uniform prior p(a) over the

bounded action space. Similarly,
∫
p(s′|s, z) log p(s′|s,z)

qφ(s′|s,z)ds
′ ≥ 0 for any variational approxima-

tion qφ(s′|s, z). Ignoring the constant p(a), the objective can now be written as

R(π) ≥
T−1∑
t=1

Eπ[log qφ(st+1|st, z)− log p(st+1)− log π(at|st, z)] = R(π, qφ).

This results in an unsupervised skill learning objective that explicitly fits a model for transition be-
haviors, while providing a grounded connection with probabilistic graphical models. Note, unlike
the setup of “control as inference” (Levine (2018), Ziebart et al. (2008)) which casts policy learning
as variational inference, the policy here is assumed to be part of the generative model itself (and
thus the resulting difference in the direction of DKL). The procedure carried out above has been
explicated in Alemi & Fischer (2018) in the context of supervised learning, having its roots in the
work on information bottleneck (Tishby & Zaslavsky (2015), Alemi et al. (2016)). The informa-
tion bottleneck interpretation can be also applied here - our algorithm maximizes the information
between next state and the augmented current state (i.e. (st, z)), while constraining the information
between actions and the augmented state.

Maximizing R(π, qφ) automatically suggests an alternating optimization scheme, as shown in Al-
gorithm 1. Notice, ∇φR(π, qφ) =

∑T−1
t=1 Eπ[∇φ log q(st+1|st, z))], which is simply maximum

likelihood over the transitions generated by the current policy. The optimization of the policy π can
be interpreted as entropy-regularized RL with a reward function log qφ(st+1|st, z) − log p(st+1).
Unfortunately, log p(st+1) is intractable to compute so we have to resort to approximations. We
choose to re-use the skill-dynamics model to approximate p(st+1) =

∫
p(st+1|s, z)p(s, z)dzds ≈

1
L

∑L
i=1 p(st+1|st, zi), where zi are sampled from the prior p(z) and s is fixed to st. The final

reward function can be written as:

rz(s, a, s
′) = log

qφ(st+1|st, z)∑L
i=1 qφ(st+1|st, zi)

+ logL, zi ∼ p(z).

While there exist other potential sampling schemes to approximate log p(st+1), we found that this
formulation encourages the diversity of primitives better than others. A more clear motivation for
this approximation can be understood from the perspective of empowerment (Mohamed & Rezende
(2015)), which is discussed in Appendix C.
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2.2 PLANNING USING SKILL DYNAMICS

Optimizing the reward function given above yields a latent-conditioned policy π(a|s, z), which gen-
erates diverse behaviors as discernible under the skill-dynamics model qφ(s′|s, z). The reward func-
tion incentivizes the agent to produce consistent behavior for a given z, while producing diverse state
transitions for different z. The biggest benefit of this setup is that we can use planning algorithms
for downstream tasks, which can be extremely sample-efficient when compared to model-free RL.

We provide a simple greedy algorithm (Algorithm 2) which exploits the skill dynamics to temporally
compose primitives for a given downstream task. For a diverse set of discrete primitives, the latent
space planning can be fairly straightforward and can even be done online without any learning.

3 EXPERIMENTS

We discuss experimental observations in this section. We begin with a qualitative observations about
the unsupervised skill learning, and then we show quantitative results on downstream planning tasks.
For all our experiments with the Ant environment (Todorov et al., 2012), we assume the observation
space for the skill-dynamics to be x-y plane, also utilized in (Eysenbach et al., 2018), something
which helps guide the diversity of unsupervised skills in the right subspace (Appendix D). This
assumption helps us focus on the more important contribution of planning using skill dynamics.

3.1 DISCRETE V/S CONTINUOUS LATENT SPACE

Figure 3: Ant trajectory samples from two-dimensional latent space (left) and discrete latent space
(right)

Unlike previous works, we found our setup to be capable of embedding skills in a continuous latent
space p(z) which we assume to be a continuous uniform distribution. It is clear from Figure 3 that
more diversity can be embedded into a smaller continuous space. We also found the continuous
latent space to be semantically meaningful, as is depicted by the interpolation between the samples
from the primitive space shown in Appendix E. The diversity in continuous space is controlled by the
number of samples from the prior p(z) when approximating p(st+1). However, a discrete primitive
space has benefits on the downstream task as planning in the discrete space can be simpler.

3.2 MODEL-BASED REINFORCEMENT LEARNING

The primary motivation to learn the parametric model qφ(s′|s, z) was to be able to use planning
algorithms for downstream tasks, which can be extremely sample-efficient. While we lose some di-
versity of primitives by constraining ourselves ourselves to a small set of discrete primitives, we can
now demonstrate something significantly stronger in regards to sample-efficiency: Zero-shot online
planning. For the downstream task, we choose the task of ant-navigation. We use the Ant model
from the OpenAI gym (Brockman et al., 2016), where we provide a dense reward for navigating to
a specific goal.

We choose to compare with the more conventional model-based RL, which learns a global model
p(s′|s, a). Model-based methods are known to be sample-efficient as compared to model-free RL,
and exhibit some generalization. We compare with a few variants of the model-based approach:
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• Random-MBRL: We train the model p(s′|s, a) on randomly collected trajectories, and we
test the zero-shot generalization of the model on the test distribution of goals. This variant
of model-based RL matches the assumptions made by our approach.
• Weak-oracle MBRL: We train the model p(s′|s, a) on trajectories generated for navigat-

ing to randomly sampled goals, the same distribution of goals from which the test set is
sampled.
• Strong-oracle MBRL: We train the model p(s′|s, a) for every goal in the test set.

Note that the Weak-oracle MBRL and Strong-oracle MBRL, benefit from goal directed exploration
provided by the oracle, a significant advantage over our model-based method which only benefits
from curiosity based exploration (in the right sub-space of x-y plane). We report the performance
of the converged models on the test set of goals. We report the d as the metric, which represents the
distance to the goal g averaged over the episode (with a fixed horizon for all models), normalized by
the initial distance to the goal g. Therefore 0 ≤ d ≤ 1 (assuming the agent goes closer to the goal),
and lower the d, the better the performance. For every g, we average d over 10 trials.

(10, 10) (10, -10) (-10, -10) (-10, 10) (0, -10) (5, 10)
Random-MBRL 0.78 0.92 0.83 0.88 0.74 0.72

Weak-oracle MBRL 0.77 0.65 0.66 0.72 0.54 0.64
Strong-oracle MBRL 0.65 0.62 0.62 0.64 0.5 0.53

Skill-Dynamics (Discrete Primitives) 0.56 0.82 0.42 0.54 0.38 0.56
Skill-Dynamics (Continuous Primitives) 0.35 0.35 0.38 0.44 0.40 0.33

From the table, it is clear that the zero-shot planning outperforms/is comparable to the model-based
RL baselines, despite the significant advantage to two of the baselines. There is no primitive that
goes into the bottom right corner, as is clear from the Figure 3 (right), which is why it struggles
to reach the goal (10, -10). A comparison with Random-MBRL shows the significance of mutual
information based exploration, especially with the right parameterization.

3.3 RL CONTROLLER V/S PLANNING

There are several approaches to learning a diverse set of low-level primitives (Eysenbach et al.
(2018); Gregor et al. (2016); Achiam et al. (2018)). However, none of the approaches can leverage a
planning based algorithms to solve the downstream tasks, and are constrained to use a task-specific
meta-controller which is again trained by RL. To demonstrate the sample-efficiency of planning, we
run a controlled experiment where we provide the same frozen lower-level primitives to both (as
the performance is heavily contingent on the quality of lower-level primitives). The skill-dynamics
based planning approach outperforms the model-free RL consistently. However, we note that the
nature of this problem is very well suited for the greedy planner, and in general it might be hard
to perform superior to model-free RL. But, our main emphasis is on sample efficiency of planning
based approaches while achieving good performance on a task, rather than striving for optimality.

Figure 4: (left) Comparison of performance of Planning (Orange) and RL trained meta-controller
(Blue). The RL controller takes about 150, 000 samples to get an average performance close to the
zero-shot planning performance on ant-navigation to (10, 10). Planning using (middle) skills learnt
with explicit rewards and (right) skills learnt with predictable dynamics.
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3.4 FIT SKILL DYNAMICS TO EXPLICITLY LEARNT POLICIES, AND THEN PLAN

The previous set of experiments showcase the utility of q(s′|s, z) as a model for planning. But, the
proposed unsupervised objective is not the only way to learn q(s′|s, z). In principle, one could learn
the skills z using explicit reward functions for every skills or other unsupervised objectives and then
fit q(s′|s, z). Such an algorithm would first have a computational overhead. The skills learnt through
the proposed objective are more predictable, and and more easily plannable. To demonstrate this,
we train the ant skills for locomotion using explicit rewards and then fit the skill-dynamics model
to the demonstrations generated by the expert skills. From Figure 4, it is clear that skill-dynamics
can still be used for planning when fit to skills learnt via explicit rewards, but more effective when
trained to be predictable.

4 CONCLUSION AND FUTURE WORK

Some obvious follow ups: (1) Extend planning algorithms to continuous primitives (which resem-
bles the more conventional model-based continuous control) and (2) Extend to hierarchical control
with different observation spaces (example: Ant in a Maze with locomotion primitives). A more
challenging and possibly fruitful direction of research would be to understand the role of state-space
representation in unsupervised skill-learning, and possibly develop an algorithm to learn these rep-
resentations. Overall, we present a novel unsupervised learning objective which can effectively plan
on downstream tasks, combining the benefits of model-free and model-based RL.
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A ALGORITHMS

Initialize π, qφ;
while not converged do

Collect new M on-policy samples;
Update qφ using K1 steps of mini batch

gradient descent on M transitions;
Compute rz(s, a, s′) for M transitions;
Update π using K2 steps of SAC on M

transitions;
end
Algorithm 1: Unsupervised Skill Discovery

s← s0;
for t← 1 to HE do

rmax ← −∞, zmax ← 1;
for z ← 1 to |Z| do

rcur ← 0, srun ← scur;
for k ← 1 to HP do

Sample a from π(a|srun, z);
Sample s′ from qφ(·|srun, z);
rcur+ = renv(s

′, a, srun);
srun ← s′;

end
if rcur > rmax then

rmax ← rcur, zmax ← z;
end

end
Sample a from π(·|scur, zmax);
Sample scur from environment;

end
Algorithm 2: Greedy Planning for Discrete
Primitives

B DIVERSITY IS ALL YOU NEED

We can carry out the exercise for the reward function in Diversity is All You Need (DIAYN) (Ey-
senbach et al. (2018)) to provide a graphical model interpretation of the objective used in the paper.
To conform with objective in the paper, we assume to be sampling to be state-action pairs from
skill-conditioned stationary distributions in the world P, rather than trajectories. Again, the objective
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Figure 5: Graphical model for the world P rep-
resenting the stationary state, action distribu-
tion. Shaded nodes represent the distributions
we optimize.
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Figure 6: Graphical model for the world Q using
which we is the representation we are interested
in. Shaded nodes represent the distributions we
optimize.

to be maximized is given by

R(π) = −IP + IQ
= −I(a; {s, z}) + I(z; s)

= Eπ[log
p(z|s)
p(z)

− log
π(a|s, z)
π(a)

]

≥ Eπ[log qφ(z|s)− log p(z)− log π(a|s, z)] = R(π, qφ)

where we have used the variational inequalities to replace p(z|s) with qφ(z|s) and π(a) with a
uniform prior over bounded actions p(a) (which is ignored as a constant).

C INTERPRETATION AS EMPOWERMENT IN THE LATENT SPACE

Recall, the empowerment objective (Mohamed & Rezende (2015)) can be stated as

I(s′; a|s) = H(a|s)− Es′ [H(a|s′, s)] ≥ H(a|s) + Ep(s′|s,a)π(a|s)[log qφ(a|s′, s))]

where the we are are learning a flat policy π(a|s), and using the variational approximation q(a|s′, s)
for the true action-posterior p(a|s′, s). We can connect our objective with empowerment if we
assume a latent-conditioned policy π(a|s, z) and optimize I(s′; z|s), which can be interpreted as
empowerment in the latent space z. There are two ways to decompose this objective:

I(s′; z|s) = H(z|s)− Es′ [H(z|s, s′)]
= H(s′|s)− Ep(z|s)[H(s′|s, z)]

Using the first decomposition, we can construct a an objective using a variational lower bound which
learns the network qφ(z|s′, s). This is a DIAYN like inference network, which learns to discriminate
skills based on the transitions they generate in the environment and not the state-distribution induced
by each skill. However, we are interested in learning the network qφ(s′|s, z), which is why we work
with the second decomposition. But, again we are stuck with marginal transition entropy, which is
intractable to compute. We can handle it in a couple of ways:

I(s′; z|s) ≥ Ez[Ep(s′|s,z)[log
qφ(s

′|s, z)
p(s′|s)

]]

≈ Ez[Ep(s′|s,z)[log
qφ(s

′|s, z)∑L
i=1 qφ(s

′|s, zi)
+ logL]]

where p(s′|s) represents the distribution of transitions from the state s. Note, we are using the ap-
proximation p(s′|s) =

∫
p(s′|s, z)p(z)dz ≈ 1

L

∑L
i=1 qφ(s

′|s, zi). Our use of q(s′|s, z) encodes the
intuition that the q should represent the distribution of transitions from s under different primitives,
and thus the marginal of q should approximately represent p(s′|s). We re-exploit this approximation
in our objective as well, noting that this strongly encourages the skills to produce diverse transitions.
However, this procedure does not yield entropy-regularized RL by itself, but arguments similar to

9
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those provided for Information Maximization algorithm by Mohamed & Rezende (2015) can be
made here to justify it in this empowerment perspective.

Note, this procedure makes an assumption p(z|s) = p(z) when approximating p(s′|s). While every
skill is expected to induce a different state-distribution in principle, this is not a bad assumption to
make as we often times expect skills to be almost state-independent (consider locomotion primitives,
which can essentially be activated from the state-distribution of any other locomotion primitive). The
impact of this assumption can be further attenuated if skills are randomly re-sampled from the prior
p(z) within an episode of interaction with the environment. Irrespective, we can avoid making this
assumption if we use the variational lower bounds from Agakov (2004), which is the second way to
learn for I(s′; z|s). We use the following inequality from the appendix of Hausman et al. (2018):

H(x) ≥
∫
p(x, z) log

q(z|x)
p(x, z)

dxdz

where q is a variational approximation to the posterior p(z|x).

I(s′; z|s) = −Ep(z|s)[H(s′|s, z)] +H(s′|s)
≥ Ep(s′,z|s)[log qφ(s′|s, z)] + Ep(s′,z|s)[log qα(z|s′, s)] +H(s′, z|s)
= Ep(s′,z|s)[log qφ(s′|s, z) + log qα(z|s′, s)] +H(s′, z|s)

where we have used the inequality forH(s′|s). Further decomposing the leftover entropy:

H(s′, z|s) = H(z|s) + Ep(z|s)[H(s′|s, z)]

Reusing the variational lower bound for marginal entropy from Agakov (2004), we get:

H(s′|s, z) ≥
∫
p(s′, a|s, z) log q(a|s

′, s, z)

p(s′, a|s, z)
ds′da

= − log c+H(s′, a|s, z)
= − log c+ Eπ(a|s,z)

[
H(s′|s, a)

]
+H(a|s, z)

Since, the choice of posterior is upon us, we can choose q(a|s′, s, z) = 1/c to induce a uniform
distribution for the bounded action space. Notice now, this corresponds to entropy-regularized RL
when the dynamics of the system are deterministic. Even for stochastic dynamics, the analogy might
be a good approximation (assuming the dynamics are not very entropic or noisy). The final objective
(making the low-entropy dynamics assumption) can be written as:

I(s′; z|s) ≥ Ep(s′,z|s)[log qφ(s′|s, z) + log qα(z|s′, s)− log p(z|s)] + Ep(z|s)[H(a|s, z)]

While we do not extensively experiment with this objective, we found the optimization for this
objective to be unstable, possibly because of the interplay of three networks.

D THE CURSE OF DIMENSIONALITY

Unsupervised skill learning presents the possibility of learning novel behaviors without any extrinsic
task reward. This is a real boon in small state spaces like that of a point-mass environment, as
demonstrated by the skills learnt in Figure 7. However, the behaviors (if understood as as sequence
of states) grows exponentially in the dimension of the state. We consider the problem of learning
skills in the Ant environment (Todorov et al. (2012)), which has a 29 dimensional continuous state-
space. Since, we are interested in locomotion perspective of the skills, we project the skills onto
the x-y plane. Trajectories generated by a fixed skill can be highly entropic in the x-y space when
skills are learnt on the full observation space, which makes it tough to compose them temporally on
downstream tasks. On the other hand, if we restrict the observation space to the x-y space, we can
get highly structured skills with consistent locomotion behavior. The restriction of the observation
space can be seen as an inductive bias to guide the diversity of skills.
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Figure 7: 128 unsupervised skills partition the 2D space of point-mass

Figure 8: Trajectories generated by a fixed skill learnt by DIAYN on the full observation space (left);
Trajectories generated by a fixed skill learnt via Skill-Dynamics on the x-y observation space (right)

E INTERPOLATION IN CONTINUOUS LATENT SPACE

Figure 9: Interpolation in the continuous primitive space learnt using skill-dynamics on the Ant
environment corresponds to interpolation in the trajectory space. (Left) Interpolation from z =
[1.0, 1.0] (solid blue) to z = [−1.0, 1.0] (dotted cyan); (Middle) Interpolation from z = [1.0, 1.0]
(solid blue) to z = [−1.0,−1.0] (dotted cyan); Interpolation from z = [1.0, 1.0] (solid blue) to
z = [1.0,−1.0] (dotted cyan).
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