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ABSTRACT

In standard reinforcement learning, each new skill requires a manually-designed
reward function, which takes considerable manual effort and engineering. Self-
supervised goal setting has the potential to automate this process, enabling an
agent to propose its own goals and acquire skills that achieve these goals. How-
ever, such methods typically rely on manually-designed goal distributions or
heuristics to force the agent to explore a wide range of states. We propose a
formal exploration objective for goal-reaching policies that maximizes state cov-
erage. We show that this objective is equivalent to maximizing the entropy of
the goal distribution together with goal reaching performance, where goals cor-
respond to entire states. We present an algorithm called Skew-Fit for learning
such a maximum-entropy goal distribution, and show that under certain regularity
conditions, our method converges to a uniform distribution over the set of possible
states, even when we do not know this set beforehand. Our experiments show that,
when combined with existing goal-conditioned algorithms, Skew-Fit can learn a
variety of manipulation tasks from images, including opening a door with a real
robot, entirely from scratch and without any manually-designed reward function.

1 INTRODUCTION

How can we design an unsupervised reinforcement learning algorithm that automatically explores
the environment and iteratively distills this experience into general-purpose policies that can ac-
complish new user-specified tasks at test time? For an agent to learn autonomously, it needs an
exploration objective that visits as many states as possible. One way to formalize this notion in
an objective is to quantify the entropy of the learned policy’s state distribution H(S). However, a
short-coming of this objective is that the resulting policy cannot be used to maximize user-defined
rewards: such a policy only knows how to maximize state entropy. Thus, if we want to develop
principled unsupervised reinforcement learning algorithms that result in useful policies, maximiz-
ing H(S) is not enough. We need a mechanism that allows us to control the resulting policy to
achieve new goals at test-time.

In this paper, we argue that this can be accomplished by performing goal-directed exploration. In
addition to maximizing the state distribution entropy H(S), we should be able to control where the
policy goes by giving it a goal G that corresponds to a desired state. Mathematically, this can be
accomplished by stating that a goal-conditioned policy should also minimize the conditional entropy
over the states given a goal,H(S | G). This objective provides us with a principled way for training
a policy to explore all states (“maximizeH(S)”) such that the state that is reached can be controlled
by commanding goals (“minimizeH(S | G)”).

Directly using this objective is intractable, since it requires optimizing the marginal state distribution
of the policy. However, we can avoid this difficult optimization by noting that our objective is the
mutual information between the state and the goal, I(S,G), which can be written as:

I(S,G) = H(S)−H(S|G) = H(G)−H(G|S). (1)
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Equation 1 thus gives an equivalent objective for an unsupervised reinforcement learning algorithm:
the agent should set diverse goals for itself (“maximize H(G)”) and learn how to reach these goals
(“minimizeH(G | S)”).

While the second objective—learning to reach goals—is the typical objective studied in goal-
conditioned reinforcement learning (Kaelbling, 1993; Andrychowicz et al., 2017), most such meth-
ods omit the first term (Nair et al., 2018; Warde-Farley et al., 2018). However, maximizing the
diversity of goals is crucial for effectively learning to reach all possible states. In an unknown
environment, acquiring such a maximum-entropy goal-sampling distribution is a challenging task:
how can an agent set goal states when it does not even know which states are feasible? When the
states are high-dimensional, as is the case for visual observations, sampling diverse goals from the
unknown manifold of valid states presents a major challenge.

In this paper, we present Skew-Fit, a method for learning to model the uniform distribution over
states, given only access to data collected by an autonomous goal-conditioned policy. Skew-Fit
trains a generative model on previously visited states, skewing the training data so that rarely visited
states are weighted more heavily, and using density estimates from the same generative model to
measure the rarity of the states.

We empirically demonstrate that, when combined with existing methods for goal-conditioned RL,
Skew-Fit allows us to autonomously train goal-conditioned policies that reach diverse states. We test
this method on a variety of simulated vision-based robot tasks, as well as a real-world manipulation
task that requires a robot to learn to open a door without any task-specific reward function. In these
experiments, Skew-Fit reaches substantially better final performance than prior methods, and learns
much more quickly. We demonstrate that our approach solves the real-world door opening task from
scratch in about five hours, without any manually-designed reward function.

2 RELATED WORK

Prior work on training goal-conditioned policies assume that a goal distribution is available to sam-
ple from during exploration (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017; Pong
et al., 2018) or use a heuristics to sample goals (Colas et al., 2018b; Warde-Farley et al., 2018;
Florensa et al., 2018a; Péré et al., 2018; Nair et al., 2018). Our work is complementary to these
methods: rather than focusing on training goal-reaching policies, we propose a principled method
for maximizing the entropy of a goal sampling distribution,H(G).
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Figure 1: Our method, Skew-Fit, samples goals for goal-conditioned RL in order to induce a uni-
form state visitation distribution. We start by sampling from our replay buffer, and weighting the
states such that rare states are given more weight. We then train a generative model pφt+1 with the
weighted samples. By sampling new states with goals proposed from this new generative model,
we obtain a wider distribution of states in our replay buffer at the next iteration. Under certain
assumptions, we prove that each iteration of Skew-Fit increases the entropy of the goal distribution.

Our method stands in contrast to exploration methods that give bonus rewards (Bellemare et al.,
2016; Ostrovski et al., 2017; Tang et al., 2017; Savinov et al., 2018; Chentanez et al., 2005; Lopes
et al., 2012; Stadie et al., 2016; Pathak et al., 2017; Burda et al., 2018b;a; Mohamed & Rezende,
2015; Chentanez et al., 2005). These methods provide no mechanism for distilling the knowledge
gained from visiting diverse states into flexible policies that can be applied to accomplish new goals
at test-time: their policies visit novel states, and they quickly forget about novel states as others
become more novel.
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Other prior methods extract reusable skills in the form of latent-variable-conditioned policies (Haus-
man et al., 2018; Gupta et al., 2018b; Eysenbach et al., 2019; Gupta et al., 2018a; Florensa et al.,
2017; Gregor et al., 2016). The resulting skills may be diverse, but they have no grounded inter-
pretation, while our method can be used immediately after unsupervised training to reach diverse
user-specified goals.

While some prior methods propose to choose goals based on heuristics (Baranes & Oudeyer, 2012;
Veeriah et al., 2018; Colas et al., 2018a; Nachum et al., 2018; Florensa et al., 2018b), our approach
provides a principled framework for optimizing a concrete and well-motivated exploration objective,
and can be shown to maximize this objective under regularity assumptions.

3 PROBLEM FORMULATION

Standard RL considers a Markov decision process (MDP), which has a state space S, action spaceA,
and unknown dynamics ρ(st+1 | st,at).Goal-conditioned RL also includes a goal space G, which
we assume to be the same as the state space, G = S. 1 2 A goal-conditioned policy π(a | s,g) maps
a state s ∈ S and goal g ∈ S to a distribution over actions a ∈ A, and its objective is to reach the
goal, i.e. to make the current state equal to the goal.

While most goal-conditioned RL methods (Kaelbling, 1993; Lillicrap et al., 2016; Schaul et al.,
2015; Andrychowicz et al., 2017; Nair et al., 2018; Pong et al., 2018; Florensa et al., 2018a) focus
on minimizing H(G | S) by training an accurate goal-reaching policy, we focus on the problem of
setting diverse goals or, mathematically, maximizing the entropy of the goal distributionH(G). Let
US be the uniform distribution over S .3 Let pφ be the goal distribution, i.e. G ∼ pφ. Our goal is
to maximize the entropy of pφ, which we write as H(G). Maximizing H(G) may seem as simple
as choosing the uniform distribution to be our goal distribution: pφ = US . However, this requires
knowing uniform distribution over valid states, which is not always trivial. In particular, we study
the case where S is a strict, unknown subset of Rn, for some n. For example, if the states correspond
to images viewed through a robot’s camera, S corresponds to the (unknown) set of valid images of
the robot’s environment, while Rn corresponds to all possible images, i.e. all arrays of a particular
size. In such environments, sampling from the uniform distribution Rn is unlikely to correspond to
a valid image of the real world.

We assume that we cannot sample arbitrary states from S, but that we can sample states by perform-
ing goal-directed exploration and observing new states. To be more concrete, we introduce a simple,
abstract, and somewhat simplified model of this process. First, a goal G ∼ pφ is sampled from our
goal distribution pφ. Then, the agent attempts to achieve this goal, which results in a distribution
of states S ∈ S seen along the trajectory. We abstract the entire MDP episode as some generative
process and write the resulting marginal distribution over S as p(S | pφ).
For the derivation and analysis of our method, we assume we have access to an oracle goal reacher,
meaning that p(S | pφ) ≈ pφ(S). In practice, we of course use goal-conditioned RL rather than
an oracle. In Section 6, we demonstrate that we can combine our method with an existing goal-
conditioned RL algorithm to jointly learn a goal-reaching policy and a goal sampling mechanism.

4 SKEW-FIT: LEARNING A MAXIMUM ENTROPY GOAL DISTRIBUTION

To learn a maximum-entropy goal proposal distribution, we present a method called Skew-Fit that
iteratively increases the entropy of a generative model pφ. Given a generative model pφt at iteration
t, we would like to train a new generative model pφt+1

such that pφt+1
has higher entropy over

the set of valid states. While we do not know the set of valid states S, we can sample states from
p(S | pφt), resulting in an empirical distribution pempt over the states

1Goal-conditioned RL can always be formulated as a standard RL problem by appending the goal to the
state.

2Some authors define the goal as a feature of the state. It is straightforward to apply the analysis and method
presented in this paper to this setting.

3We assume S has finite volume so that the uniform distribution is well-defined.
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pempt(s) =
1

N

N∑
n=1

1{s = Sn}, Sn ∼ p(S | pφt), (2)

and use this empirical distribution to train the next generative model pφt+1
. However, if we simply

train pφt+1 to model this empirical distribution, it may not necessarily have higher entropy than pφt .

The intuition behind our method is quite simple: rather than fitting a generative model to our em-
pirical distribution, we skew the empirical distribution so that rarely visited states are given more
weight. See Figure 1 for a visualization of this process.

How should we skew the empirical distribution if we want to maximize the entropy of pφt+1? If
we had access to the density of each state, pempt(S), then we could simply weight each state by
1/pempt(S). We could then perform maximum likelihood estimation (MLE) for the uniform distri-
bution by using the following loss to train φt+1:

L(φ) = ES∼US [log pφ(S)] = ES∼pempt

[
US(S)

pempt(S)
log pφ(S)

]
∝ ES∼pempt

[
1

pempt(S)
log pφ(S)

]
where we use the fact that the uniform distribution US(S) has constant density for all states in S.
We avoid needing to model the entire MDP process, which requires an accurate model of both the
dynamics and the goal-conditioned policy, by approximating pempt(S) with our previous learned
generative model: pempt(S) ≈ p(S | pφt) ≈ pφt(S).
This procedure relies on importance sampling (IS), which can have high variance, particularly if
pφt(S) ≈ 0. We reduce this variance by weighing each state by pφt(S)

α, for α ∈ [−1, 0) rather
than pφ(S)−1. By choosing intermediate values of α, we can trade off the variance introduced by
small pφt(S) with the speed of the entropy increase to the goal distribution. Next, rather than relying
on IS, we explicitly define a skewed distribution using the IS weights:

pskewedt(s) =
1

Zα
pempt(s)pφt(s)

α, α ∈ [−1, 0), s ∈ {Sn}Nn=1 (3)

where Zα is the normalizing coefficient and pempt is given by Equation 2. Lastly, we fit the gener-
ative model at the next iteration pφt+1

to pskewedt using standard MLE. Shown in Section A in the
Appendix is that, for a range of values of α ∈ [−1, 0), this procedure will always increase the en-
tropy of the resulting distribution and eventually converge to a uniform distribution over valid states.
We also note that because pφt+1

≈ pskewedt , at iteration t+1, one can sample goals from either pφt+1

or pskewedt . The final Skew-Fit procedure is visualized in Figure 1 and summarized in Algorithm 1.

Algorithm 1 Skew-Fit
1: for Iteration t = 1, 2, ... do
2: Collect N states {Si}Ni=1 by sampling G from pφt (or pskewedt ) and rolling out policy.
3: Construct skewed distribution pskewedt (Equation 3).
4: Fit pφt+1 to skewed distribution pskewedt using MLE.
5: end for

5 SKEW-FIT WITH GOAL-CONDITIONED REINFORCEMENT LEARNING

Thus far, we have presented Skew-Fit assuming that we have access to an oracle goal-reaching
policy. In practice we do not have access to such an oracle goal-reaching policy, and so we must
combine Skew-Fit with existing goal-conditioned reinforcement learning to maximize −H(G | S).
Maximizing −H(G | S) requires computing the density log p(G | S), which may be difficult
to compute without strong modeling assumptions. However, we show in Section B that using the
following reward results in maximizing a lower bound for −H(G | S):

r(S,G) = log q(G | S).

Since Skew-Fit uses a generative model to propose goals, it is particularly natural to combine with
reinforcement learning with imagined goals (RIG) Nair et al. (2018), though in theory any goal-
conditioned method could be used. RIG is an efficient off-policy goal-conditioned method that fits a

4



Published as a conference paper at ICLR 2019

100K 200K 300KTimesteps
0.04
0.06
0.08
0.10
0.12

Fin
al P

uck
 Di

sta
nce

Visual Puck PushingRIG + Skew-Fit (Ours)
RIG
RIG + ICM
RIG + DISCERN
RIG + DISCERN-g
RIG + HER
RIG + AutoGoal GAN
RIG + # Exploration

20K 30K 40K 50K 60K 70KTimesteps
0.0

0.2

0.4
Fin

al A
ng

le D
iffe

ren
ce Visual Door Opening

100K 200K 300KTimesteps
0.01
0.02
0.03
0.04
0.05

Fin
al O

bje
ct D

ista
nce

Visual Object Pickup

Figure 2: (Left) Learning curves for simulated continuous control experiments. Lower is better. We
show the mean and standard deviation of 6 seeds and smooth temporally across 25 epochs within
each seed. RIG + Skew-Fit consistently outperforms RIG and various baselines. See Appendix for
description of each method. (Right) The first column displays example test goal images. The next
two columns show an example image of the goal image reached by RIG + Skew-Fit and RIG. Under
each image is the final distance in state space, though all tasks are trained from only images. The
prior methods generally fail to generalize to these test goal images.

VAE and uses it to encode all observations and goals into a latent space. RIG also uses the generative
model for both goal sampling and compute rewards, log q(G | S). Applying Skew-Fit to RIG then
amounts to using Skew-Fit rather than MLE to train the VAE. We also replace the underlying RL
algorithm with soft actor critic (Haarnoja et al., 2018).

6 EXPERIMENTS
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Figure 3: (Left) Picture of real-world door task setup. (Right) Learning curve for Real World Visual
Door environment. We visually label a success if the policy opens the door to the target angle by the
last state of the trajectory. Skew-Fit results in considerable sample efficiency gains over RIG.

Vision-based robot manipulation We evaluate Skew-Fit on simulated vision-based continuous con-
trol tasks. The agent must control a robot arm using only image observations, without access to any
ground truth reward signal. Details of each environment and the chosen baselines are given in the
Appendix. Training policies for these tasks is done in a completely unsupervised manner without
access to any prior information about the state-space. However, to evaluate their performance, we
evaluate their performance by sampling goal images from a uniform distribution. We report the
final distance to the corresponding simulator state (e.g. distance of the puck to the target puck lo-
cation). We see in Figure 2 that Skew-Fit significantly outperforms prior methods both in terms of
task performance and sample complexity.

Real-world vision-based robotic manipulation Next, we demonstrate that Skew-Fit scales well to
the real world with a door opening task.See Figure 7 for an image of the environment. We train an
agent to control a Sawyer robot to open a door. We do not provide any goals to the agent and simply
let it interact with the door to solve the door opening task from scratch, without any human guidance
or reward signal. We train agents using RIG + Skew-Fit as well as RIG. As Figure 3 shows,
standard RIG only starts to open the door consistently after five hours of training. In contrast, RIG
+ Skew-Fit learns to open the door after three hours of training and achieves a perfect success rate
after five and a half hours of interaction time, demonstrating that Skew-Fit is a promising technique

5



Published as a conference paper at ICLR 2019

for solving real world tasks without any human-provided reward function. Videos of our method
solving this task, along with the simulated environments, can be viewed on our website. 4

Additional Experiments We also perform additional experiments including ablations and more
thorough analysis in simple 2D environments in Section E.
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A SKEW-FIT ANALYSIS

In this section, we provide conditions under which pskewedt converges to the uniform distribution
over the state space S . Our most general result is stated as follows:
Lemma A.1. Let S be a compact set. Define the set of distributions Q = {p : support of p is S}.
Let F : Q 7→ Q be a continuous function and such that H(F(p)) ≥ H(p) with equality if and
only if p is the uniform probability distribution on S, US . Define the sequence of distributions
P = (p1, p2, . . . ) by starting with any p1 ∈ Q and recursively defining pt+1 = F(pt).
The sequence P converges to US .

Proof. See C.1.

The assumption that S is compact is easily achieved in most application and makes US well defined.

We will apply Lemma A.1 to be the map from pskewedt to pskewedt+1
to show that pskewedt converges

to US5. Skew-Fit produces a sequence of distributions (pφ1
, pemp1 , pskewed1 , pφ2

, . . . ), and so we
need to reason about the intermediate distributions, pφt and pempt . We begin with a few assumptions
about the optimization method that maps pskewedt to pφt+1 and the goal-conditioned policy that maps
pφt to pempt , which are subroutines in Skew-Fit. We assume that these maps are continuous and
do not decrease the entropy, i.e. H(pempt+1

) ≥ H(pφt+1
) ≥ H(pskewedt). The continuity assumption

states that the method used to fit pφt+1 and the goal-conditioned policy are well-behaved. Moreover,
making a statement without the entropy assumption would be difficult: if the goal-conditioned policy
ignored the goal and always entered the same state, or if the generative model only captured a single
mode pskewedt , it would be challenging for any procedure to result in the uniform distribution.

Next, we assume the support of pφt contains S, so that pskewedt is well defined and a continuous
function of pempt and pφt . Note that pφt can have support larger than S, and so we can choose to
optimize pφt over any class of generative models with wide supports, without needing to know the
manifold S.

To use Lemma A.1, we must showH(pskewedt) ≥ H(pempt) with equality if and only if pempt = US .
For the simple case when pφt = pempt identically at each iteration, we prove that this is true for any
value of α ∈ [−1, 0) in Lemma C.2 of the Appendix.

The entropy of pskewedt becomes more difficult to analyze when pφt 6= pempt . However, we prove
the following result:
Lemma A.2. Given two distribution pempt and pφt where pempt � pφt

6 and

0 < CovS∼pempt

[
log pempt(S), log pφt(S)

]
, (4)

define the distribution pskewedt as in Equation 3. Let Hα(α) be the entropy of pskewedt for a fixed α.
Then there exists a constant a < 0 such that for all α ∈ [a, 0),

H(pskewedt) = Hα(α) > H(pempt).

Proof. See C.4

While Lemma A.2 does not give an exact value for α, it states that if we choose negative values of α
that are small enough and if the log densities of pempt and pφt are positively correlated, then we can
guarantee that the entropy of pskewedt will be higher then the entropy of pempt . In practice, we expect
the correlation to be frequently positive with an accurate goal-conditioned policy, since pempt is the
set of states seen when trying to reach goals from pφt . Moreover, we found that α values as low as
α = −1 performed well. Lastly, the condition in Equation 4 is impossible to achieve if and only if
log pempt(S) is a constant, meaning that pempt is the uniform distribution.

In summary, we see that under certain assumptions, pskewedt converges to US . Since we train each
generative model pφt+1 by fitting it to pskewedt , we expect pφt to also converge to US . We verify this
numerically on both toy domains and realistic RL problems in our experiments.

5We take N →∞ and refer to convergence in distribution.
6 p� q means that p is absolutely continuous with respect to q, i.e. p(s) = 0 =⇒ q(s) = 0.
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B POLICY REWARD DERIVATION

Maximizing I(G,S) can be done by simultaneously performing Skew-Fit and training a goal con-
ditioned policy to minimize H(G | S), or, equivalently, maximize −H(G | S). Maximizing
−H(G | S) requires computing the density log p(G | S), which may be difficult to compute with-
out strong modeling assumptions. However, for any distribution q, the following lower bound for
−H(G | S) holds:

−H(G | S) = E(G,S)∼pφt ,π [log q(G | S)] +DKL(p | q)
≥ E(G,S)∼pφt ,π [log q(G | S)]

where DKL denotes Kullback–Leibler divergence. Thus to minimizeH(G | S), we train a policy to
maximize the following reward:

r(S,G) = log q(G | S).

C PROOFS

Let q � p means that q is absolutely continuous with respect to p, i.e. p(x) = 0 =⇒ q(x) = 0.
Lemma C.1. Let S be a compact set. Define the set of distributions Q = {p : support of p is S}.
Let F : Q 7→ Q be a continuous function and such that H(F(p)) ≥ H(p) with equality if and
only if p is the uniform probability distribution on S, US . Define the sequence of distributions
P = (p1, p2, . . . ) by starting with any p1 ∈ Q and recursively defining pt+1 = F(pt).
The sequence P converges to US .

Proof. The uniform distribution US is well defined since S is compact. Because S is a compact set,
by Prokhorov’s Theorem Billingsley (2013), the set Q is sequentially compact. Thus, P has a con-
vergent subsequence P ′ = (pk1 , pk2 , . . . ) ⊂ P for k1 < k2 < . . . that converges to a distribution
p∗ ∈ Q. Because F is continuous, p∗ must be a fixed point of F since by the convergence mapping
theorem, we have that

lim
i→∞

pki = p∗ =⇒ lim
i→∞

F(pki) = H(p∗)

and so

p∗ = lim
i→∞

pki

= lim
i→∞

F(pki−1
)

= H(p∗).
The only fixed point of F is US since for any distribution p that is not the uniform distribution,
US , we have that H(F(p)) > H(p) which implies that F(p) 6= p. Thus, P ′ converges to the only
fixed point, US . Since the entropy cannot decrease, then entropy of the distributions in P must also
converge to the entropy of US . Lastly, since entropy is a continuous function of distribution, P must
converge to US .

Lemma C.2. Assume the set S has finite volume so that its uniform distribution US is well defined
and has finite entropy. Given any distribution p(s) whose support is S, recursively define pα

pα(s) =
1

Zα
p(s)α, ∀s ∈ S

where Zα is the normalizing constant and α ∈ [0, 1)7.

7In the paper, α ∈ [−1, 0). However, when pempt = pφt , Equation 3 becomes

pskewedt(S) =
1

Zα
pφt(S)pφt(S)

α, α ∈ [−1, 0)

=
1

Zα
pφt(S)

α′ , α′ ∈ [0, 1)

10
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For all α ∈ [0, 1),

H(pα) ≥ H(p)
with equality if and only if p is US , the uniform distribution S.

Proof. If α = 0 or p is the uniform distribution, the result is clearly true. We now study the case
where α ∈ (0, 1) and p 6= UA.

Define the one-dimensional exponential family {ptθ : α ∈ [0, 1]} where ptθ is

ptθ(s) = eαT (s)−A(α)+k(s)

with log carrier density k(s) = 0, natural parameter α, sufficient statistic T (s) = log pt(s), and log-
normalizer A(α) =

∫
S e

αT (s)ds. As shown in Nielsen & Nock (2010), the entropy of a distribution
from a one-dimensional exponential family with parameter α is given by:

Htθ(α) , H(ptθ) = A(α)− αA′(α)
The derivative with respect to α is then

d

dα
dHtθ(α) = −αA′′(α)

= −αVars∼ptθ [T (s)]
= −αVars∼ptθ [log pt(s)]
≤ 0

where we use the fact that the nth derivative of A(α) is the n central moment, i.e. A′′(α) =
Vars∼ptθ [T (s)]. Since variance is always non-negative, this means the entropy is monotonically
decreasing with α, and so

H(pα) ≥ H(p1) = H(p)
with equality if and only if

Vars∼ptθ [log p(s)] = 0.

However, this only happens if log p(s) is constant over its support, i.e. it is the uniform distribution
over its support.

We also prove the convergence directly for the (even more) simplified case when pskewedt = pφt+1
=

pempt+1
using a similar technique:

Lemma C.3. Assume the set S has finite volume so that its uniform distribution US is well defined
and has finite entropy. Given any distribution p(s) whose support is S, recursively define pt with
p1 = p and

pt+1(s) =
1

Ztα
pt(s)

α, ∀s ∈ S

where Ztα is the normalizing constant and α ∈ [0, 1).

The sequence (p1, p2, . . . ) converges to US , the uniform distribution S.

Proof. If α = 0, then p2 (and all subsequent distributions) will clearly be the uniform distribution.
We now study the case where α ∈ (0, 1).

At each iteration t, define the one-dimensional exponential family {ptθ : θ ∈ [0, 1]} where ptθ is

ptθ(s) = eθT (s)−A(θ)+k(s)

with log carrier density k(s) = 0, natural parameter θ, sufficient statistic T (s) = log pt(s), and log-
normalizer A(θ) =

∫
S e

θT (s)ds. As shown in Nielsen & Nock (2010), the entropy of a distribution
from a one-dimensional exponential family with parameter θ is given by:

Htθ(θ) , H(ptθ) = A(θ)− θA′(θ)

11
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The derivative with respect to θ is then
d

dθ
dHtθ(θ) = −θA′′(θ)

= −θVars∼ptθ [T (s)]
= −θVars∼ptθ [log pt(s)] (5)

≤ 0

where we use the fact that the nth derivative of A(θ) is the n central moment, i.e. A′′(θ) =
Vars∼ptθ [T (s)]. Since variance is always non-negative, this means the entropy is monotoni-
cally decreasing with θ. Note that pt+1 is a member of this exponential family, with parameter
θ = α ∈ (0, 1). So

H(pt+1) = Htθ(α) ≥ Htθ(1) = H(pt)
which implies

H(p1) ≤ H(p2) ≤ . . . .
This monotonically increasing sequence is upper bounded by the entropy of the uniform distribution,
and so this sequence must converge.

The sequence can only converge if d
dθH

t
θ(θ) converges to zero. However, because α is bounded

away from 0, Equation 5 states that this can only happen if

Vars∼ptθ [log pt(s)]→ 0. (6)

Because pt has full support, then so does ptθ. Thus, Equation 6 is only true if log pt(s) converges to
a constant, i.e. pt converges to the uniform distribution.

Lemma C.4. Given two distribution p(x) and q(x) where p� q and

0 < Covp[log p(X), log q(X)] (7)

define the distribution pα as

pα(x) =
1

Zα
p(x)q(x)α

where α ∈ R and Zα is the normalizing factor. LetHα(α) be the entropy of pα. Then there exists a
constant a > 0 such that for all α ∈ [−a, 0),

Hα(α) > Hα(0) = H(p). (8)

Proof. Observe that {pα : α ∈ [−1, 0]} is a one-dimensional exponential family

pα(x) = eαT (x)−A(α)+k(x)

with log carrier density k(x) = log p(x), natural parameter α, sufficient statistic T (x) = log q(x),
and log-normalizer A(α) =

∫
X e

αT (x)+k(x)dx. As shown in Nielsen & Nock (2010), the entropy of
a distribution from a one-dimensional exponential family with parameter α is given by:

Hα(α) , H(pα) = A(α)− αA′(α)− Epα [k(X)]

The derivative with respect to α is then
d

dα
Hα(α) = −αA′′(α)−

d

dα
Epα [k(x)]

= −αA′′(α)− Eα[k(x)(T (x)−A′(α)]
= −αVarpα [T (x)]− Covpα [k(x), T (x)]

where we use the fact that the nth derivative of A(α) give the n central moment, i.e. A′(α) =
Epα [T (x)] and A′′(α) = Varpα [T (x)]. The derivative of α = 0 is

d

dα
Hα(0) = −Covp0 [k(x), T (x)]

= −Covp[log p(x), log q(x)]
which is negative by assumption. Because the derivative at α = 0 is negative, then there exists a
constant a > 0 such that for all α ∈ [−a, 0],Hα(α) > Hα(0) = H(p).

12
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D ENVIRONMENT DETAILS

Point-Mass: In this environment, an agent must learn to navigate a square-shaped corridor (see
Figure 6). The observation is the 2D position, and the agent must specify a velocity as the 2D
action. The reward at each time step is the negative distance between the achieved position and
desired position.

Visual Pusher: A MuJoCo environment with a 7-DoF Sawyer arm and a small puck on a table that
the arm must push to a target position. The agent controls the arm by commanding x, y position
for the end effector (EE). The underlying state is the EE position, e and puck position p. The
evaluation metric is the distance between the goal and final puck positions. The hand goal/state
space is a 10x10 cm2 box and the puck goal/state space is a 30x20 cm2 box. Both the hand and puck
spaces are centered around the origin. The action space ranges in the interval [−1, 1] in the x and y
dimensions.

Visual Door: A MuJoCo environment with a 7-DoF Sawyer arm and a door on a table that the arm
must pull open to a target angle. Control is the same as in Visual Pusher. The evaluation metric is
the distance between the goal and final door angle, measured in radians. In this environment, we
do not reset the position of the hand or door at the end of each trajectory. The state/goal space is
a 5x20x15 cm3 box in the x, y, z dimension respectively for the arm and an angle between [0, .83]
radians. The action space ranges in the interval [−1, 1] in the x, y and z dimensions.

Visual Pickup: A MuJoCo environment with the same robot as Visual Pusher, but now with a dif-
ferent object. The object is cube-shaped, but a larger intangible sphere is overlaid on top so that it
is easier for the agent to see. Moreover, the robot is constrained to move in 2 dimension: it only
controls the y, z arm positions. The x position of both the arm and the object is fixed. The evaluation
metric is the distance between the goal and final object position. For the purpose of evaluation, 75%
of the goals have the object in the air and 25% have the object on the ground. The state/goal space
for both the object and the arm is 10cm in the y dimension and 13cm in the z dimension. The action
space ranges in the interval [−1, 1] in the y and z dimensions.

Real World Visual Door: A Rethink Sawyer Robot with a door on a table. The arm must pull the
door open to a target angle. The agent controls the arm by commanding the x, y, z velocity of the
EE. Our controller commands actions at a rate of up to 10Hz with the scale of actions ranging up to
1cm in magnitude. The underlying state and goal is the same as in Visual Door. Again we do not
reset the position of the hand or door at the end of each trajectory. We obtain images using a Kinect
Sensor and our robotic control code can be found at https://github.com/mdalal2020/
sawyer_control.git The state/goal space for the environment is a 10x10x10 cm3 box. The
action space ranges in the interval [−1, 1] (in cm) in the x, y and z dimensions. The door angle lies
in the range [0, 30] degrees.
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Figure 5: Cumulative total pickups during exploration for each method. RIG + Skew-Fit quickly
learns to learn to pick up the object while the baselines fail to pay attention to the object.

E ADDITIONAL EXPERIMENT AND EXPERIMENT DETAILS

E.1 BASELINES

First, we compare to standard RIG, without Skew-Fit. We also compare to hindsight experience
replay (HER) Andrychowicz et al. (2017), which relabels goals based on states seen in the rest of
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the trajectory. While the original HER paper operates directly on the raw state space, we were unable
to get HER to learn from pixels. We instead ran HER on the same latent space used as our method,
and use the learned generative model to sample goals for exploration. We denote this baseline RIG
+ HER. Florensa et al. (2018b) samples goals from a GAN based on the difficulty of reaching the
goal. We include a comparison against this method by replacing pφ with the GAN and label it RIG
+ AutoGoal. We compare to Warde-Farley et al. (2018), which uses a non-parametric approach
based on clustering to sample goals and a state discriminator to compute rewards. When trained
either on images or the RIG latent state, we were unable to obtain good results, and have included
the latter as RIG + DISCERN. We also compare to the goal proposal mechanism proposed by
Warde-Farley et al. (2018) without the discriminiative reward in DISCERN, which we label RIG +
DISCERN-g. Lastly, we compare our method to two exploration methods based on reward bonuses:
ICM (Pathak et al., 2017), which rewards an agent for visiting states that are difficult to predict, and
# Exploration (Tang et al., 2017), which rewards an agent for visiting novel states, where novelty is
measured using a hash table. These two baselines are denoted RIG + ICM and RIG + #Exploration
respectively.

E.2 2D NAVIGATION EXPERIMENTS

We initialize the VAE to only output points in the bottom left corner of the environment. Both the
encoder and decoder have ReLU hidden activations, 2 hidden layers with 32 units, and no output
activations. The VAE has a latent dimension of 16 and a Gaussian decoder trained with mean-
squared error loss, batch size of 500, and 100 epochs per iteration. For Skew-Fit hyperparameters,
α = −0.5 and N = 10000.

For the RL version of this task, the VAE was trained in the same way. The RL hyperparameters are
listed in Table 1. Our experimental evaluation of Skew-Fit aims to study the following empirical
questions: (1) Can Skew-Fit learn a generative model to find the uniform distribution over the set of
valid states? (2) Does Skew-Fit work on high dimensional state spaces, such as images? (3) When
combined with goal-conditioned RL, can Skew-Fit enable agents to autonomously set and learn to
reach a diverse set of goals?

Section E.3 studies the first question in the context of a simple 2-dimensional navigation environ-
ment. Section E.4 studies the second question by applying Skew-Fit to both simulated and real-world
images in an unsupervised learning setting, without a goal-conditioned policy. Finally, Section ??
analyzes the performance of Skew-Fit when combined with RIG on a variety of simulated tasks,
vision-based robot manipulation tasks.

Figure 6: (Left) The set of final states visited by our agent and MLE over the course of training.
In contrast to MLE, our method quickly approaches a uniform distribution over the set of valid
states. (Right) The entropy of the sample data distribution, which quickly reaches its maximum for
Skew-Fit. The entropy was calculated via discretization onto a 60 by 60 grid.

E.3 SKEW-FIT ON SIMPLIFIED RL ENVIRONMENT

We first analyze the effect of Skew-Fit for learning a goal distribution in isolation from training
a goal-reaching policy. To this end, we study an idealized example where the policy is a hand-
designed, near-perfect goal-reaching policy.

14
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The MDP is defined on a 2-by-2 unit square-shaped corridor (see Figure 6). At the beginning of
an episode, the agent begins in the bottom-left corner and samples a goal from a goal distribution
pφt . To model an imperfect policy, we add zero-mean Gaussian noise to this sampled goal with a
standard deviation of 0.05. The policy reaches the state that is closest to this noisy goal and inside the
corridor, giving us a state S to add to our empirical distribution. After collecting N = 10000 states
using the process above, we train pφt+1

on the collected states and then repeat the entire procedure,
this time sampling goals from pφt+1 . We compare Skew-Fit to a goal sampling distribution that is
only trained using maximum likelihood estimation (MLE).

As seen in Figure 6, Skew-Fit results in learning a high entropy, near-uniform distribution over the
state space. In contrast, MLE only models the states that are explored by the initial noise of the
policy, resulting in the policy only setting goals in and exploring the bottom left corner. These
results empirically validate that naively using previous experience to set goals will not result in
diverse exploration and that Skew-Fit results in a maximum-entropy goal-sampling distribution.

Figure 7: Here we display all four of our continuous control environments. In the top left corner,
Visual Door, the simulated door opening environment. In the top right, Visual Pickup, the simulated
object pick up task. The bottom left display Visual Pusher, the simulated puck pushing environment
while the bottom right is Real World Visual Door, the real world door opening task. See appendix
for more details.

(a) Skew-Fit (b) MLE
Figure 8: Samples from a generative model pφ when trained with (a) Skew-Fit and with (b) max-
imum likelihood estimation trained on images from the simulated door opening task. The models
are trained on a dataset collected by executing a random policy in the environment, which results
in mostly images with a closed door and only occasional images with the door open. Note that the
Skew-Fit samples are substantially more diverse, meaning that if pφ were used to sample goals, it
would encourage the agent to practice opening the door more frequently.
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E.4 MODELING VISUAL OBSERVATIONS

We would like to use Skew-Fit to learn maximum-entropy distributions over complex, high-
dimensional state spaces, where we cannot manually design these uniform distributions. The next
set of experiments study how Skew-Fit can be used to train a generative model to sample diverse
images when trained on an imbalanced dataset. For these experiments, we use a simulated Mu-
JoCo (Todorov et al., 2012) environment and real environment that each consists of a 7 degree of
freedom robot arm in front of a door that it can open. See Figure 7 for a visualization of the simulated
and real-world door environment, and the Appendix for more details on the environment.

We generate a dataset of images from the environment by running a policy that samples actions
uniformly at random. Such a policy represents a particularly challenging setting for standard VAE
training methods: a policy that chooses random actions does not visit uniformly random states, but
rather states that are heavily biased toward ones that resemble the initial state. In the door opening
environment, this means that many of the samples have the door in the initial closed position, and
only the robot’s arm moves. We then train two generative models on these datasets: one using Skew-
Fit and another using MLE. For our generative model, we use the same generative model as the one
in RIG, a variational autoencoder Kingma & Welling (2014). To estimate the likelihood of our data,
we use Monte Carlo estimation and importance sampling to marginalize the latent variables. See
Appendix Section E.7 for experimental details.

In this experiment, we do not train a goal-conditioned policy, and instead only study how Skew-
Fit can be used to effectively “balance” this dataset. As can be seen in Figure 8 and Figure ??,
the samples produced by the model trained with Skew-Fit generally have a much wider range of
door angles, while the model trained with MLE only captures a single mode of the door, both for
simulated and real-world images.

0K 5K 10K 15K 20K
Timesteps

0

1

2

3

Fi
na

l D
ist

an
ce

 to
 G

oa
l Pointmass: Goal Distance

Skew-Fit MLE

(a)

Final Distance to Goal
Skew-Fit MLE

(b)
Figure 9: (a) Comparison of Skew-Fit vs MLE goal sampling on final distance to goal on RL version
of the pointmass environment. Skew-Fit consistently learns to solve the task, while MLE often fails.
(b) Heatmaps of final distance to each possible goal location for Skew-Fit and MLE. Skew-Fit learns
a good policy over the entire state space, but MLE performs poorly for states far away from the
starting position.

E.5 2D NAVIGATION

We now provide a simple experiment that combines Skew-Fit with a goal-conditioned policy that is
trained. We reproduce the 2D navigation environment experiment from Section E.3, and replace the
oracle goal-reacher with a goal-reaching policy that is simultaneously trained. The policy outputs
velocities with maximum speed of one. Evaluation goals are chosen uniformly over the valid states.
In Figure 9a, we can see that a policy trained with a goal distribution trained by Skew-Fit consistently
learns to reach all goals, whereas a goal distribution trained with MLE results in a policy that fails
to reach states far from the starting position.
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E.6 SENSITIVITY ANALYSIS

We study the sensitvity of the α hyperparameter by testing values of
α ∈ [0,−0.25,−0.5,−0.75,−1] on the Visual Door and Visual Pusher task. The results are
included in the Appendix in Figure 10 and shows that our method is relatively robust to different
parameters of α, particularly for the more challenging Visual Pusher task.
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Figure 10: We sweep different values of α on (a) Visual Door and (b) Visual Pusher. Skew-Fit helps
the finally performance marginally on the Visual Door task, and even degrades performance if α is
large in magnitude. In the more challenging Visual Pusher task, we see that Skew-Fit consistently
helps and halves the final distance.

E.7 VISION-BASED CONTINUOUS CONTROL EXPERIMENTS

For our underlying RL algorithm, we use a modified version of soft actor critic (SAC) with auto-
mated entropy tuning Haarnoja et al. (2018) and twin Q-functions Fujimoto et al. (2018). This is
in contrast to the original RIG Nair et al. (2018) paper which used TD3 Fujimoto et al. (2018). We
found that maximum entropy policies in general improved the performance of RIG, and that we did
not need to add noise on top of the stochastic policy’s noise. For our RL network architectures and
training scheme, we use fully connected networks for the policy, Q-function and value networks
with two hidden layers of size 400 and 300 each. We also delay training any of these networks
for 10000 time steps in order to collect sufficient data for the replay buffer as well as to ensure the
latent space of the VAE is relatively stable (since we train the VAE online in this setting). As in
RIG, we train a goal-conditioned value functions Schaul et al. (2015) using hindsight experience
replay Andrychowicz et al. (2017), relabelling 50% of exploration goals as goals sampled from the
VAE prior N (0, 1) and 30% from future goals in the trajectory.

In our experiments, we use an image size of 48x48. For our VAE architecture, we use a modified
version of the architecture used in the original RIG paper Nair et al. (2018). Our VAE has three
convolutional layers with kernel sizes: 5x5, 3x3, and 3x3, number of output filters: 16, 32, and 64
and strides: 3, 2, and 2. We then have a fully connected layer with the latent dimension number of
units, and then reverse the architecture with de-convolution layers. We vary the latent dimension of
the VAE, the β term of the VAE and the α term for Skew-Fit based on the environment. Additionally,
we vary the training schedule of the VAE based on the environment. See the table at the end of the
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Hyper-parameter Value
Algorithm TD3 Fujimoto et al. (2018)a

# training batches per time step 1
Q network hidden sizes 400, 300

Policy network hidden sizes 400, 300
Q network and policy activation ReLU

Exploration Noise None
RL Batch Size 1024

Discount Factor 0.99
Path length 25

Reward Scaling 100
Number of steps per epoch 5000

Table 1: Hyper-parameters used for 2D RL experiment (Figure 9a).

aWe expect similar performance had we used SAC.

appendix for more details. Our VAE has a Gaussian decoder with identity variance, meaning that
we train the decoder with a mean-squared error loss.

We estimate the density under the VAE by using a sample-wise approximation to the marginal over
x estimated using importance sampling:

pφt(x) = Ez∼qθt (z|x)
[

p(z)

qθt(z|x)
pψt(x | z)

]
≈ 1

N

N∑
i=1

[
p(z)

qθt(z|x)
pψt(x | z)

]
.

where qθ is the encoder, pψ is the decoder, and p(z) is the prior, which in this case is unit Gaussian.
In practice we found that sampling N = 10 latents for estimating the density to work well in
practice.

When training the VAE alongside RL, we found the following two schedules to be effective for
different environments:

1. For first 5K steps: Train VAE using standard MLE training every 500 time steps for 1000
batches. After that, train VAE using Skew-Fit every 500 time steps for 200 batches.

2. For first 5K steps: Train VAE using standard MLE training every 500 time steps for 1000
batches. For the next 45K steps, train VAE using Skew-Fit every 500 steps for 200 batches.
After that, train VAE using Skew-Fit every 1000 time steps for 200 batches.

We found that initially training the VAE without Skew-Fit improved the stability of the algorithm.
This is due to the fact that density estimates under the VAE are extremely unstable and inaccurate
during the early phases of training. As a result, we simply train using MLE training at first, and once
the density estimates stabilize, we perform Skew-Fit. Table 2 lists the hyper-parameters that were
shared across the continuous control experiments. Table 3 lists hyper-parameters specific to each
environment.
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Figure 11: Example reached goals by RIG + Skew-Fit and RIG. The first column of each environ-
ment section specifies the target goal while the second and third columns show reached goals by
RIG + Skew-Fit and RIG. Both methods learn how to reach goals close to the initial position, but
only RIG + Skew-Fit learns to reach the more difficult goals.

Hyper-parameter Value Comments
# training batches per time step 2 Marginal improvements after 2

Exploration Noise SAC policy Did not tune
RL Batch Size 1024 smaller batch sizes work as well

VAE Batch Size 64 Did not tune
Discount Factor 0.99 Did not tune
Reward Scaling 1 Did not tune

Path length 100 Did not tune
# of latents for estimating density (N ) 10 Marginal improvements after 10

Table 2: General hyper-parameters used for all continuous control experiments.

Hyper-parameter Visual Pusher Visual Door Visual Pickup Real World
Visual Door

Path Length 50 100 50 100
β for β-VAE 20 20 30 60

Latent Dimension Size 4 16 16 16
α for Skew-Fit −1 −1/2 −1 −1/2

VAE Training Schedule 2 1 2 1
Sample Goals From pφ pskewed pskewed pskewed

Table 3: Environment specific hyper-parameters
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Figure 12: Proposed goals from the VAE for RIG and with RIG + Skew-Fit on the Visual Pickup,
Visual Pusher, and Visual Door environments. Standard RIG produces goals where the door is
closed and the object and puck is in the same position, while RIG + Skew-Fit proposes goals with
varied puck positions, occasional object goals in the air, and both open and closed door angles.

20



Published as a conference paper at ICLR 2019

Figure 13: Proposed goals from the VAE for RIG and with RIG + Skew-Fit on the Visual Pickup,
Visual Pusher, and Visual Door environments. Standard RIG produces goals where the door is
closed and the object and puck is in the same position, while RIG + Skew-Fit proposes goals with
varied puck positions, occasional object goals in the air, and both open and closed door angles.

21


	Introduction
	Related Work
	Problem Formulation
	Skew-Fit: Learning a Maximum Entropy Goal Distribution
	Skew-Fit with Goal-Conditioned Reinforcement Learning
	Experiments
	Skew-Fit Analysis
	Policy Reward Derivation
	Proofs
	Environment Details
	Additional Experiment and Experiment Details
	Baselines
	2D Navigation Experiments
	Skew-Fit on Simplified RL Environment
	Modeling Visual Observations
	2D navigation
	Sensitivity Analysis
	Vision-Based Continuous Control Experiments


