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ABSTRACT

Real-world image sequences can often be naturally decomposed into a small num-
ber of frames depicting interesting, highly stochastic moments (its keyframes) and
the low-variance frames in between them. In image sequences depicting trajecto-
ries to a goal, keyframes can be seen as capturing the subgoals of the sequence
as they depict the high-variance moments of interest that ultimately led to the
goal. In this paper, we introduce a video prediction model that discovers the
keyframe structure of image sequences in an unsupervised fashion. We do so
using a hierarchical Keyframe-Intermediate model (KEYIN) that stochastically
predicts keyframes and their offsets in time and then uses these predictions to
deterministically predict the intermediate frames. We propose a differentiable for-
mulation of this problem that allows us to train the full hierarchical model using
a sequence reconstruction loss. We show that our model is able to find meaning-
ful keyframe structure in a simulated dataset of robotic demonstrations and that
these keyframes can serve as subgoals for planning. Our model outperforms other

hierarchical prediction approaches for planning on a simulated pushing task.

1 INTRODUCTION

The interesting structure in real-world image
sequences can often be compactly described
in terms of a sparser sequence of informative
frames picked from such sequences (examples
in Figure [T). In animation, these informative
frames are called keyframes. When creating a
sequence, lead animators first draw keyframes
depicting the important changes in the sequence
and then pass the sparse keyframe sequence to
other animators, knowing they can interpolate
between the keyframes to flesh out the correct,
finished animation. For the full sequence to be
depicted faithfully, keyframes must be informa-
tive about the underlying dynamics of the se-
quence. For example, consider the settings de-
picted in Fig. In domains like billiards or
tennis, it is simple to reconstruct the trajectory
of the ball given only a description of the times
when the ball strikes a surface. However, it
would be difficult to reconstruct the trajectory
given a description of the ball at other times. In
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Figure 1: A variety of sequences exhibit an ap-
parent keyframe structure. These sequences can
be compactly described in terms of the frames
containing bounce points, because the motion be-
tween these points is largely deterministic. Sim-
ilarly, in many sequences depicting behavior, the
frames depicting the subgoals of a sequence are
difficult to predict (c). In the example shown, an
agent must collect a subset of the objects in a grid-
world environment. If the agent’s subgoals are
known the full trajectory can be easily recovered.

*Equal contribution. Ordering determined by a coin flip.
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this light, a natural strategy to predict the full trajectory of the ball is to first estimate the points of
contact and then interpolate between them using an appropriate, simple model.

In this work, we use keyframe-based video prediction to address the problem of discovering subgoal
structure in image sequences depicting behavior. A large body of previous work has addressed the
challenge of learning to predict image sequences (Villegas et al.| (2017); Vondrick et al.| (2016));
Srivastava et al.| (2015)); Mathieu et al.[(2016); Babaeizadeh et al.| (2018)); |Denton & Fergus| (2018);
Lee et al.|(2018)); Chung et al.|(2015)). However, most previous approaches predict trajectories one
frame at a time without attempting to capture hierarchical temporal structure.

We propose a neural network architecture for modeling video sequences that exploits the keyframe
structure of image sequences by including two modules: one module predicts keyframes together
with corresponding interframe offsets between keyframes, and the other deterministically predicts
the intermediate frames between the keyframes. Using this structure, the changes in the sequence
are first modeled in terms of a set of keyframes that summarizes the video, while temporally finer-
scale predictions are filled in afterwards. We call this the Keyframe-Intermediate model or KEYIN.
We propose a continuous relaxation of the temporally discrete prediction problem by allowing the
predicted time offsets between the keyframes to be “soft” distributions over discrete time steps. The
soft objective allows us to train the model with just the video reconstruction loss: the network is
trained to find the timesteps containing keyframes that best describe the entire video sequence, such
that the intermediate predictions that use these keyframes achieve the lowest reconstruction loss. We
show that these keyframes can be treated as subgoals in a planning task. The subgoals generated
by our model facilitate planning as they allow us to break the planning task into shorter parts that
correspond to single subtasks.

2 RELATED WORK

Jayaraman et al.[(2019); Neitz et al.| (2018) propose models that find and predict “bottlenecks” in
video — i.e. the frames that have to be passed to reach a goal image from an initial image. In contrast
to these models, which predict the frames that are least uncertain and so most easily predicted, our
model predicts keyframes that allow the entire video to be easily produced by deterministic neural
interpolation. Our model is also designed to be able to predict full videos, instead of keyframes
alone, and it can predict the times at which the keyframes occur. This makes it more suitable for
planning and other tasks that benefit from reconstructing frame-by-frame dynamics.

In parallel to our work, [Kipf et al.| (2018)) propose a strikingly similar method for sequence seg-
mentation via variational inference with continuous relaxation of segment boundaries. Kipf et al.
use this model to train an RL agent by recovering subtasks from demonstrations, while we focus on
leveraging models for video prediction and planning within a learned latent space.

3 APPROACH

3.1 KEYFRAME-BASED VIDEO PREDICTION

Our model takes the form of a conditional variational autoencoder (Sohn et al.| (2015)) that learns
to produce a distribution of possible future sequences Iy.y given a conditioning sequence I_7.o by

dividing the produced sequence Ij.x into M segments and producing each segment individually.

To achieve this, we use several recurrent LSTM (Hochreiter & Schmidhuber| (1997))) modules de-
scribed in this section. We encode the conditioning frames with LSTM_,,4, which initializes the
keyframe predictor LSTMj,.,,. The approximate inference network LSTM,,, ; observes and encodes
the future sequence Ij.y, where N is the total number of frames in the future. At each step ¢,
LSTMj., observes a latent variable 2* sampled from the output of LSTM,,, ¢ via an attention mech-

anism, and produces the next keyframe embedding K ¢!, where “e” stands for “embedding”. Finally,
an instance of LSTM,,,¢, is initialized for every pair of keyframes to produce the segment between

the keyframes (f ; ’t)i. The overall video prediction model is illustrated in Fig.

Keyframe prediction. LSTMy,, predicts a sequence of keyframe embeddings (K e’t)tS v and
corresponding distributions of the interframe offsets (4. 5)¢< s, where M is the maximal possible
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Figure 2: Left: Overview of our keyframe-based prediction approach. The keyframe network
LSTM,ey (shown in blue), predicts a set of keyframes Kt of the sequence and the length of the
intervals between them 6'. LSTM;yr (shown in green) takes two consecutive keyframes and the
interframe offset between them as input and predicts the intermediate frames I;. Right: Soft loss
shown for the first keyframe. The target image K'is composed of the ground truth images by lin-
early weighting them with the distribution §°. Finally, we use a reconstruction loss between the
produced image K* and the soft target K.

number of keyframes and S is the maximum possible distance between two keyframes. We condition
LSTMp., on a sequence of 7' initial frames to let the model estimate the motion via LSTM_ 4.

LSTM_onq produces the initial state of LSTMj.,: Init?ey = Final’,,,;. The first keyframe K is
given by the last frame in the input sequence.

Intermediate prediction. Each pair of keyframes produced by LSTMy,, is passed to the in-
termediate LSTM, LSTM,,,;.-, Which predicts the frames that fill the gaps between keyframes.

LSTM;terr produces S frames (f t)1<g for each segment ¢{. The initial state of LSTM;e,
is computed as a feedforward function of the corresponding segment information: Init’
MLP’HLZtJnteT(K &t 17 Ke t7 60;5‘)‘

inter

To produce a sequence given the output of the predictive model, we choose the interframe offset for
keyframe ¢ as 6' = argmax; §!. We then compose the predicted sequence Io.n as (I 5t) . Note
that N < M x S: if N is equal to M x S, the network would be forced to always predict the
maximum number of segments and frames in the segment. At training time, /. is not used for the
loss directly, as detailed in the next section.

3.2 SOFT LOSS BY LINEAR INTERPOLATION IN TIME

The temporal spacing of keyframes is not uniform within a sequence: some parts of the trajectory
might contain more stochastic events than the others. We want the network to be able to adjust the
keyframes it predicts to the sequence at hand by training it to dynamically predict the best offset
dt. To allow this and still allow end-to-end differentiability, we propose a continuous relaxation
of the reconstruction loss with discrete time offsets. We produce soft target frames K by linearly
interpolating between all possible targets for the predicted keyframes Kt weighted with the corre-
sponding offset probabilities 6t, and soft target frames I for ground truth frames I; weighted with

5t ; respectively. The intuition behind the loss is depicted in Fig. I

Soft targets. We produce a keyframe target as: K* = 3 ; 6;[ ;» where &* is the distribution of

possible timesteps computed from §%¢. We further compute the probability that Kt is inside the
predicted sequence ¢! = . J<N 6j In a similar fashion, we define a soft loss for the generated

interpolating frames ff The targets for ground truth images are given as an interpolation between
generated images [; = (3, ; 5f7 7If )/ > .. 6F ;. Here, Jt is the probability of the i-th predicted
image in segment ¢ to have an offset of j from the begmmng of the predicted sequence.

Soft Loss. We compute the losses both for keyframe embeddings K¢, decoded keyframes Kt and

intermediate frames IA;. The keyframe loss is:



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Keyframe Keyframe

Segment 1 Segment 2 Segment 3

Ground

Truth

P, Koy o) AN AERERE
G e e el ]

Figure 3: Comparison of reconstruction sequences by KEYIN and by the baseline with static inter-
frame offset. The prediction is conditioned on the first five ground truth frames. Only half of the
predicted sequence is shown for clarity. Movement direction changes are marked with red in the
ground truth sequence, inferred keyframes with blue in the predicted sequences. We see that KEYIN
can correctly reconstruct the motion as it selects an informative set of keyframes. The baseline fails
to model the motion as it cannot select the correct keyframes. The sequence the baseline predicts
is missing both direction changes since they cannot be inferred from the boundary keyframes of the
respective segments.

Liey = (Y ¢ Brall K* = K'|I” + ¢ Bel K — K| + ' BKLIN (i, o) [N (0, 1))/ D _ ¢!
t t
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The full loss for our model is:
»Ctotal :»Ckey+Z||Ij _jj|‘2' (2)

t,i

We found that pre-training the interpolator on random subsegments helps training stability of our
method. We freeze the interpolator weights after pre-training and train the full model with the full
loss.

4 EXPERIMENTS

We evaluate our model on two datasets to test whether it can discover a keyframe structure and
whether the discovered keyframes improve hierarchical planning. First, the Structured Brownian
motion dataset consists of binary image sequences of resolution 32 x 32 in which a ball randomly
changes directions after periods of straight movement. In the Pushing Dataset we use a rule-based
policy to create 50k sequences of a robot arm pushing a puck towards a goal on the opposite side of
a wall in a sequence of pushes (see Fig.[d] left). Both start and target position, and the placement of
the wall are varying, and the individual demonstration pushes vary in length and direction.

4.1 KEYFRAME DISCOVERY

We validate that our model is able to detect meaningful keyframes, reconstruct the input sequence
given the keyframe and model the distribution of possible video continuations given a beginning of
a video.

Fig.[3|shows a comparison of KEYIN and the static abla- Table 1: Fl accuracy score for keyframe
tion that does not adapt prediction of 6 to the sequence at ~ discovery, higher is better.
hand, but instead learns a static keyframe offset pattern.

The static baseline produces intermediate predictions that METHOD SBM  PusH
do not correspond to the true sequence. KEYIN in con- RANDOM 015 018
trast is able to correctly find the direction change points, JUMPY 0.17  0.23
as these are the keyframes that determine the structure STATIC 021  0.18
of the sequence. Furthermore, KEYIN faithfully pre- SURPRISE 0.73 0.10
dicts both appearance and the motion of the intermediate KEYIN (OURS) 0.84 0.30

frames from the found keyframes. The keyframe discov-
ery examples on the Pushing dataset are in Fig. [6]in the appendix. They show that the network is
able to model the distribution of length and direction of pushes as well as find correct keyframes in
the more complex pushing dataset, too.
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Figure 4: Left: A training sequence and two samples from our model on the Pushing dataset. Each
image shows an entire trajectory. Our model first samples the keyframes (shown in red), and then
deterministically predicts the rest of the sequence. The start object position is colored purple and the
robot arm is displayed only for the keyframes. Right: Planning on the pushing dataset. The top row
shows the planned subgoals using KEYIN. The bottom sequence shows snapshots from a successful
trajectory between the start state on the left and the goal state that is depicted transparently in each
frame. The low-level execution closely follows the given subgoals and successfully reaches the goal.

In Table [I] we evaluate the frequency of keyframe discovery using the F1 score. Our method cor-
rectly recovers the keyframes more often than the baselines. We compare to a simple surprise-based
baseline based on the stochastic video predictor of [Denton & Fergus| (2018) that measures surprise
via KL-divergence with the prior. The Surprise baseline can correctly recover the keyframes on the
simple Structured Brownian Motion dataset, but struggles on the more complex Pushing dataset.

4.2 HIERARCHICAL PLANNING

We evaluate whether our method can Table 2: Planning performance on a pushing task.
successfully guide planning by us-

ing discovered keyframes as subgoals METHOD POSITION ERROR  SUCCESS RATE
during planning. We apply KEYIN INTITIAL 132+ 0.06 _

on the planning task of the Pushing RANDOM 1.32 4+ 0.07 )

Dataset: pushing the object around

the wall to a target position, which is NO SUBGOALS 0.90 +0.14 15.0%
specified with an image. To achieve TAP 0.80 +0.16 23.3%
this, we first find a sequence of SURPRISE 0.64:£0.28 20.87%

’ JumPY 0.62 £+ 0.33 58.8%
keyframes that reaches the target and KEYIN (OURS) 0.50 - 0.26 64.2 %

treat this as our subgoal plan. We
then execute this sequence by employing a low-level planner that takes each subgoal and itera-
tively plans a sequence of actions that reaches the subgoal. This planning procedure is illustrated in
Fig.[7]and described in more detail in Sec.[Fin the appendix.

We compare our method against a method that plans directly towards the final goal (No Subgoal), a
method that stochastically predicts subgoals at a fixed time offset (Jumpy, similar to Buesing et al.|

(2018)), and a bottleneck-based subgoal predictor (TAP, [Jayaraman et al.| (2019)) as well as the
il

surprise-based model described in Sec.

We show that our method outperforms previous work (see Tab. ). All subgoal-based methods
outperform the no subgoal baseline. Our method outperforms the Jumpy and Surprise baseline as it
is better able to find meaningful keyframes that make the low-level planning easier by breaking the
task down into simple subtasks. Our method also outperforms TAP, a bottleneck-based method, as
the environment doesn’t have obvious bottlenecks.

5 CONCLUSION

We present a method for discovering informative keyframes in video sequences by variational video
prediction. We do so using a hierarchical model, called KEYIN, that first predicts the keyframes of
a sequence and their offsets in time using stochastic prediction and then interpolates the remaining
intermediate frames deterministically. We show that our method discovers meaningful keyframe
structure on several datasets with stochastic dynamics, and that when used to produce planning
subgoals, our method outperforms several other hierarchical prediction methods.

Videos, including all test executions of our method and baselines, can be found at https://sites.
google.com/view/keyinl


https://sites.google.com/view/keyin
https://sites.google.com/view/keyin
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A METHOD DETAILS

Stochastic prediction. As shown in|Babaeizadeh et al.[(2018); Denton & Fergus|(2018)); Lee et al.
(2018), deterministic video prediction methods produce blurry, unrealistic images on stochastic data.
To model the stochasticity of a dataset, we use the recurrent latent variable approach. By using a
latent variable model, we can learn to predict the distribution of possible video continuations given
a beginning of a video.

We condition the predictive model {LSTMkey,LSTMmteT} on a sequence of latent variables
(2")t<m, which at training time are produced by an approximate inference network LSTM;,, .

LSTM;,, s observes the full sequence of M x S frames and outputs (K;’mf ,Tj)jg Mxs, wWhere

K™/ is an embedding used to compute an attention weight and the 7; are values to be attended
over. We compute the posterior distribution over 2! using a key-value attention mechanism [Bah-
danau et al.|(2015)); Luong et al.|(2015)):

arj = exp(d(K=~1 K5")) 3)
phot =0 anm)) Y an. (4)
J J

The distance metric, d, is the inner product. We use Gaussian approximate posterior and unit Gaus-
sian prior distributions.

Two-stage training procedure. To train our model correctly, we want the keyframe embeddings
Ketto only describe the corresponding frame. However, we found that when training the keyframe
and the intermediate predictor together, this rarely happens, as the network learns to embed informa-
tion about the segment into Kt If K¢ contains information about the whole segment, the posi-
tioning of the keyframe no longer matters since the segment can be correctly reconstructed from any
position. To prevent this, we train our model in a two-stage procedure. First, the intermediate predic-
tor LSTM; ¢, is trained to interpolate between frames sampled with random offsets, thus learning
interpolation strategies for a variety of different inputs. In the second stage, we freeze LSTM; ¢
weights and only use it to backpropagate the error to the restof the model. In this way, we can
train the entire model to produce image sequences by using the trained interpolator LSTM;,¢e,-. We
found this technique effective in preventing the network from embedding extra information in Ket
since the interpolator is insensitive to such extra information. To let it cope with uncertainty when
the randomly selected boundaries are not true keyframes, we train the interpolator in a stochastic
manner, similarly to a seq2seq VAE model (Bowman et al.|(2016)). However, we want the keyframe
predictor to find the keyframes that lead to deterministic interpolations. Accordingly, we sample the
interpolator latent variable from the prior when training the keyframe predictor. In practice we found
that intermediate predictions are only accurate if they are fully determined by the two keyframes and
not dependent on other information that might be encoded in the seq2seq VAE latent.

Continuous relaxation Similar continuous relaxation strategies have been previously introduced
for images by the Spatial Transformer Network (Jaderberg et al.| (2015))) and RNN outputs in the
Adaptive Computation Time model (Graves| (2016)). We note that a continuous relaxation might
not result in a valid trained model if the network at convergence does not output distributions §°
that are close one-hot. In practice, we did not observe this being a problem for our experiments as
our networks always converged to a valid solution. A continuous relaxation allows us to train the
neural network efficiently without the need of sampling-based methods like REINFORCE (Williams
(1992)).

We describe the details of the continuous relaxation loss computation in Algorithm

B EXPERIMENTAL PARAMETERS

For training the interpolator network, we set 8;; = 1. We train the interpolator on segments of 2-8
frames for Structured Brownian motion data, and 2-6 frames for Pushing data. The KL-divergence
term for the interpolator VAE is 10~3. For training the keyframe predictor, we set By = 1, Bri =
0, 8 = 5%10~2. We activate the produced images with sigmoid and use BCE loss to avoid saturation.
The convolutional encoder and decoder both have three layers for the Structured Brownian motion
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Figure 5: A training sequence and two samples from our model on the Structured Brownian motion
dataset. Each image shows an entire trajectory. Our model first samples the keyframes (shown in
red), and then deterministically predicts the rest of the sequence. The image resolution was enhanced
for viewability.
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Figure 6: Example frame predictions on the Pushing dataset. In each sequence, the top row cor-
responds to the ground truth, and the bottom row to the predicted image sequence. The prediction
is conditioned on the first five ground truth frames. Only 12 of the 30 predicted frames are shown
for clarity. Movement direction changes are marked with red in the ground truth sequence. In this
figure, and in general, we observe that for each direction change our network predicts a keyframe
either exactly or at the timestep next to the direction change. These keyframes can effectively serve
as subgoals for our planning method.

dataset and four layers for the Pushing dataset. We use a simple two-layer LSTM with a 256-
dimensional state in each layer for all recurrent modules. Each LSTM has a linear projection layer
before and after it that projects the observations to and from the correct dimension. We use the
Adam optimizer (Kingma & Bal (2015)) with 5; = 0.9 and 82 = 0.999, batch size of 30, and a
learning rate of 2e — 4.

C EXPERIMENTAL SETUP

Each network was trained on a single high-end NVIDIA GPU. We trained the interpolator for 100K
iterations, and the keyframe predictor for 200K iterations, which took about a day in total.
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Figure 7: Hierarchical planning procedure. First, we train our KEYIN model on a dataset of demon-
strations. At planning time, we can use the model to produce the keyframes between the current
observation image and the goal. Finally, we use a low-level MPC planner to reach each keyframe
individually, until the final goal is reached.

Algorithm 1 Planning in the subgoal space.

Input: Keyframe model KEYIN(.,.), cost function ¢
Input: Start and target images Iy and Irge
Set the sampling distribution to the prior:
tn =00, =1
forn=0...H do
Sample L sequences of latent variables:
20M o N (ptny o)
Produce subgoal plans: K9M = KEYIN(Iy, z20M)
Compute cost between produced and true target:
c(KM)
Choose L’ best plans, refit sampling distribution:
Pnt1s Ontr = fit(2],)
end for
Return: Best subgoal plan KM

D DATA COLLECTION IN THE MUJOCO ENVIRONMENT

The data collection for our pushing dataset is completed in an environment simulated by MuJoCo
Todorov et al.| (2012). In the environment, a robot arm initialized at the center of the table has to
push an object to a goal position at the other side of a wall-shaped obstacle.

Demonstrations follow a rule-based algorithm that first samples subgoals between the initial position
of the object and the goal and then runs a deterministic pushing procedure to the subgoals in order.
Ground truth keyframes of the demonstrations are defined by frames at which subgoals are finished.

We subsample demonstration videos by a factor of 2 when saving them to the dataset, dropping
every other frame in the trajectory and averaging actions of every two consecutive frames. For all
datasets we generate for this environment following a rule-based algorithm, we only take successful

10
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Algorithm 2 Continuous relaxation loss computation

Input: Ground truth frames Iy.y, Produced frames I ! produced offset distributions &°
Compute the distribution of keyframe timesteps. For the first keyframe, 6L =4t
fort=2...M do

Compute further 6* with convolution: §* = §*~1 % 6*, i.e. 6! = 3. i o= 0t
end for )
Compute probabilities of keyframes being within the predicted sequence: ¢! = > J<N 5;-.

Compute soft keyframe targets: Kt = Z
Compute the keyframe loss: (3", c!||K* — KtH )/ >,

Get probabilities of segments ending after particular frames: ef = j>i 6;.
t

Get distributions of individual frames timesteps: (5 ;o< 6t i1

Compute soft individual frames: [; = =i ot ]If

Compute the sequence loss: 3=, , ||I; — I;||*.

Algorithm 3 Selecting keyframes via Surprise

Input: Input sequence 1., Stochastic Video Prediction model SV G(.)
Run the inference network over the sequence: ¢(zo.n|lo.n) = SVG(Ip.N)
Get the surprise measure: s; = K L[q(z¢|lo.t)||p(2t)]

Find the set of peak surprise points .S where: s; > s;41 A s¢ < S¢—1

if |S| < M then
add M — |S| maximum surprise points to S.
end if

Return: M maximum surprise peaks: arg max M, S;

demonstrations and drop the ones that fail to push the object to the goal position within a predefined
horizon.

E SURPRISE BASELINE

On keyframe discovery, we compare to a frame-by-frame sequential prediction baseline that mea-
sures surprise of seeing the next frame given the previous frames and selects keyframes as top 6
frames ¢ where the surprise peaks. We use a sequential stochastic predictor based on |Denton &
Fergus| (2018) measure the surprise via the KL-divergence K L[q(z¢|Io.t)||p(z¢)] (more details in
the supplement). This simple baseline determines the frames at which unexpected events happen,
however, it is unable to globally reason about which frames will be the most helpful to reconstruct
the whole trajectory.

Denton & Fergus| (2018]) observe that the variance of the learned prior of a stochastic video predic-
tion model tends to spike before an uncertain event happens. We use a similar observation to find
the points of high uncertainty for the Surprise baseline. We use the KL divergence between the prior
and the approximate posterior K L[q(z¢|1o.+)||p(2¢)] to measure the surprise. This quantity can be
interpreted as the number of bits needed to encode the latent variable describing the next state, and
will be larger if the next state is more stochastic.

We train a stochastic video prediction network SVG-FP (Denton & Fergus| (2018))) with the same
architecture of encoder, decoder and LSTM as our model. We found that selecting the peaks of
suprise works the best for finding true keyframes. The procedure that we use to select the keyframes
is described in Algorithm[3] In order to find the keyframes in a sequence sampled from the prior, we
run the inference network on the produced sequence.

11



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

F PLANNING ALGORITHM

Since our keyframe predictor network is trained as a conditional VAE, it can model the distribution of
possible subgoals that are consistent with demonstration data. To construct a subgoal plan, we search
this space to find the sequence of subgoals such that the final (sub)goal optimizes the planning cost.
‘We base our planning on the Cross-Entropy Method (CEM, Rubinstein & Kroese|(2004)). However,
instead of planning in action space, we plan in the latent space of our model. Algorithm [I] details
the process.

Algorithm [I]allows us to find a subgoal plan that is optimized for reaching the target image. To exe-
cute this plan, we need another, low-level planner which is able to reach each subgoal individually.
We again employ CEM-based planning based on the ground truth dynamics model of the simulator.
We compare our procedure against baselines that use the same low-level planner and thus measure
only the quality of the predicted subgoals. We show an example successful planning execution using
the KEYIN subgoals in Fig. ]

To apply the KEYIN model for planning, we use an approach for visual servoing that is outlined
in Algorithm [I] At the initial timestep, we use the cross-entropy method (CEM) (Rubinstein &
Kroese| (2004)) to select subgoals for the task. To do so, we sample M latent sequences zq from the
prior A/(0, I) and use the keyframe model to retrieve M corresponding keyframe sequences 7Y,
each with L frames. We define the cost of an image trajectory as the distance between the target
image and the final image of each keyframe sequence defined under a domain-specific distance
function (see below). In the update step of the Cross Entropy Method (CEM) algorithm, we rank the
trajectories based on their cost and fit a diagonal Gaussian distribution to the latents 2’ that generated
the M’ = r M best sequences. We repeat the procedure above for a total of NV iterations.

We define the cost between two frames used during planning as the euclidean distance between the
center pixels of the object in both frames. We recover the center pixel via color-based segmenta-
tion of the object. While this cost function is designed for the particular planning environment we
are testing on, our algorithm can be easily extended to use alternative, more domain-agnostic cost
formulations that are proposed in the literature (Finn & Levine|(2017)); [Ebert et al.|(2017; 2018)).

After subgoals are selected, we use a cross-entropy method (CEM) based planner to produce rollout
trajectories. Similar to the subgoal generation procedure, at each time step, we initially sample M
action sequences ug from the prior A/(0, I) and use the ground truth dynamics of the simulator to
retrieve M corresponding image sequences T, each with [ framesﬂ We define the cost of an image
trajectory as the distance between the target image and the final image of each trajectory. In the
update step, we rank the trajectories based on their cost and fit a diagonal Gaussian distribution to
the actions u’ that generated the M’ = rM best sequences. After sampling a new set of actions
U, 41 from the fitted Gaussian distributions we repeat the procedure above for a total of [V iterations.

Finally, we execute the first action in the action sequence corresponding to the best rollout of the
final CEM iteration. The action at the next time step is chosen using the same procedure with the
next observation as input and reinitialized action distributions. The algorithm terminates when the
specified maximal number of servoing steps Ti.x has been executed or the distance to the goal is
below a set threshold.

We switch between planned subgoals if (i) the subgoal is reached, i.e. the distance to the subgoal is
below a threshold or (ii) the current subgoal was not reached for T .« €xecution steps. We use the
true goal image as additional, final subgoal.

The parameters used for our visual servoing experiments are listed in Tab. [3]

?In practice we clip the sampled actions to a maximal action range [—@umax, +@max) before passing them to
the simulator.

12
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Algorithm 4 Visual Servoing with Video Prediction Model

Input: Keyframe model KL = LSTMyey (I, 21.1)

Input: Video prediction model me = LSTMinter(11:4—1, U2:t41)

Input: Subgoal index update heuristics ix;+1 = f(ix¢, It, K1.1)

Input: Start and goal images Iy and [0

Initialize latents from prior: 2o ~ A (0, I)

forn=0...Ndo ~ .
Rollout keyframe model for L steps, obtain M future keyframe sequences 7%¢Y = K.;,

Compute distance between final and goal image: c¢(7%¢Y) = dist(f( L+ Looar)

Choose M’ best sequences, refit Gaussian distribution: ,u,f;jﬂ, o-ﬁiyl = fit(K),)

Sample new latents from updated distribution: z,, 1 ~ N (ufﬁﬁ’l, o’fbj_yl)

end for
Feed best sequence of latents into keyframe model to obtain subgoals: K7.
LSTMjey (o, va,o)
Set current subgoal to ix; =1
fort=1...T do
Perform subgoal update ix; = f(ix¢—1, It—1, K7.})
Initialize latents from prior: uy ~ N (0, )
forn=0...Ndo )
Rollout prediction model for [ steps, obtain M future sequences 7 = I;.; 1
Compute distance between final and subgoal image: ¢(7) = dist(I;;, Ki, )
Choose M’ best sequences, refit Gaussian distribution: pr,, 1, 0,41 = fit(u!,)
Sample new latents from updated distribution: w1 ~ N (fpt1,0nt1)
end for
Execute u} , and observe next image I;
end for

Table 3: Hyperparameters for the visual servoing experiments.

Servoing Parameters

Max. servoing timesteps (7Tiax) 60
Max. per subgoal timesteps (Ts max) 10

Keyframe prediction horizon (L) 6

# keyframe sequences (M) 200
Servoing horizon () 8

# servoing sequences (M) 200
Elite fraction (r = M'/M) 0.05
# refit iterations (V) 3
max. action (Gmax) 1.0
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A
v

Start

Executed Trajectory

Figure 8: Sample planning task executions from the test set. From a start state depicted on the left,
the robot arm successfully pushes the object into the goal position (semi-transparent object) guided
by the KEYIN subgoals. The right side of the figure shows intermediate frames of the execution
trajectories.
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