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ABSTRACT

An open challenge in deep reinforcement learning (RL) is solving a variety of
long-horizon tasks in environments using high-dimensional sensory inputs such
as images. Existing model-based and model-free RL algorithms have difficulty
solving such tasks, due to the accumulation of model bias and reduced capac-
ity to solve new tasks, respectively. In this paper, we propose an algorithm that
combines the advantages of flexible model-based planners with the asymptotic
performance of goal-conditioned model-free policies. Our planner decomposes
long-horizon tasks into shorter ones by optimizing for intermediate “sub-goals”
that our goal-conditioned policy can easily reach. However, to avoid planning di-
rectly in image space, where the set of valid sub-goals is unknown, we first learn a
latent embedding, where we can optimize over the set of known, valid latent states.
We demonstrate that on long-horizon, simulated robotic tasks, our method outper-
forms prior work, including pure goal-conditioned methods and pure model-based
methods.

.

1 INTRODUCTION

Deep reinforcement learning is a promising approach to allow agents to autonomously acquire com-
plex skills, but often requires balancing sample efficiency for final performance. In particular, deep
RL methods are generally divided into model-based and model-free methods, each with their own
benefits. Model-free methods have been shown to achieve remarkable and even super-human perfor-
mance on a variety of high dimensional tasks (Mnih et al., 2015; Silver et al., 2016; Lillicrap et al.,
2016). However, these methods often require large amounts of experience, making them difficult
to apply to real-world tasks where sample-efficiency is of great concern, such as robotics. On the
other hand, planning-based methods learn extremely quickly by using a rich source of supervision to
train forward or inverse models (Deisenroth & Rasmussen, 2011; Lenz et al., 2015; Agrawal et al.,
2016; Nagabandi et al., 2018) which can be used across various tasks, but are often outperformed by
model-free methods (Pong et al., 2018; Haarnoja et al., 2018). Can we develop algorithms that have
both the sample-efficiency of planning-based methods and asymptotic performance of model-free
methods?

One promising avenue to combine the advantages of these methods is through temporal difference
models (TDMs) (Pong et al., 2018). Temporal difference models (TDMs) are a class of finite-
horizon goal-conditioned value functions trained to predict how close a policy will get to a goal
given a finite time budget. For short horizons, TDMs can be used to plan intermediate “goal states”
analogous to planning with an inverse model. For long horizons, TDMs correspond to conventional
model-free goal-conditioned policies. By choosing intermediate horizons, TDMs gain the benefits
of both planing-based and model-free approaches, and have been shown to outperform both on a
variety of robot locomotion and manipulation tasks.

In contrast to planning methods that use forward dynamics models, which optimize over actions,
TDMs require optimizing over the state space to choose intermediate sub-goals. While such an op-
timization is straightforward in simple state spaces, this optimization presents a particular challenge
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when the set of valid states is an unknown subset of Rn. For example, consider a locomotion task
where the state consists of a robot’s XY-location. If one uses a standard optimization technique such
as the cross entropy method (De Boer et al., 2005), the outputted plan may require the robot to move
inside a wall. More generally, one needs to know the set of valid states to prevent the optimizer
from outputting invalid states. However, we would like to deploy these methods in unknown envi-
ronments where the set of valid states cannot be known ahead of time. How then can we constrain
our optimizer to an unknown state space?

We propose to address these issues by learning a transformation of the state space that is amenable to
planning. This transformation should have two properties. First, the transformed state space should
be dense, so that standard optimization techniques such as gradient descent or the cross entropy
method are computationally feasible. Second, it should have low dimensionality, to reduce the
computational burden. We achieve these desiderata by using a generative latent model to transform
the original state space into a low-dimensional, dense state space.

Our contributions are as follows: First, we demonstrate that in environments with simple state
spaces, we can use a TDM to automatically generate multiple sub-goals to decompose a long-
horizon problem into multiple, short-horizon problems that can be solved by a goal-conditioned
policy. While this potential approach is discussed in the original TDM paper, we provide a concrete
instantiation and show that this results in a much more sample-efficient algorithm, as compared
to pure model-free methods and vanilla TDMs. Second, we propose a new method for extending
TDMs to state spaces that reside in an unknown manifold of a higher dimension, where a stan-
dard TDM method may be computationally feasible. Third, we demonstrate that this new method,
which we call projected temporal difference model planning (PTP), outperforms existing approaches
to solve image-based environments, suggesting that PTP is a promising approach for combining
the advantages of model-based and model-free methods for solving long-horizon MDPs with high-
dimensional state spaces.

2 BACKGROUND

We consider a finite-horizon Markov decision process (MDP) defined by a tuple
(S,A, p,R, Tmax, ρ0), where S is the set of states, A is the set of actions, p(st+1 | st,at) is
the (possibly unknown) dynamics function, R is the time-varying reward function, Tmax is the
maximum horizon, and ρ0 is the initial state distribution. The objective is to obtain a policy
π(at | st) to maximize the expected sum of rewards E[

∑Tmax

t=0 R(st, t)], where states are sampled
according to s0 ∼ ρ0, at ∼ π(at | st), and st+1 ∼ p(st+1 | st,at). We consider the special case of
goal-conditioned MDPs (Schaul et al., 2015), where the state includes a goal vector and the policy
is rewarded based on how close it gets to this goal at the final time step.

2.1 TEMPORAL DIFFERENCE MODELS

Since the reward function depends only on the final state reached, a powerful framework for opti-
mizing these MDPs is to use temporal difference models (TDMs) (Pong et al., 2018). TDMs are
goal-conditioned value functions (Schaul et al., 2015), defined by1

V π(s,g, t) = E

[
Tmax∑

t′=Tmax−t
RTDM(st′ ,g, t

′) | sTmax−t = s, π is conditioned on g

]
(1)

where the TDM reward RTDM is given by

RTDM(s,g, t) = −1(t = Tmax)d(s,g) (2)

where 1 is the indicator function, and the distance function d is defined by the user. This particular
choice of reward function gives a TDM the following interpretation: given a state s, how close
will the goal-conditioned policy π get to g after t time steps of attempting to reach g? TDMs can
thus be used as a measure of reachability by quantifying how close to another state the policy can
get in t time steps. In practice, this value function cannot be computed exactly, and we rely on
Q-learning (Watkins & Dayan, 1992) to approximate V .

1While the authors originally defined TDMs in terms of Q functions, we use the analogous V function.
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3 PLANNING WITH TEMPORAL DIFFERENCE MODELS

We now describe how planning with TDMs can leverage the advantages of model-based and model-
free methods. We henceforth omit the dependence of V on π to keep the notation uncluttered.

Suppose that we are solving a long-horizon problem, where the maximum horizon Tmax is large.
At the beginning of each episode, we could employ our TDM starting with the horizon Tmax, and
decrement the horizon at each step. Since Tmax is large, the TDM may suffer from high uncertainty
for the initial stages of the episode, leading to suboptimal policies. This is due to the fact that the
reward signal from the last timestep must propagate to the beginning of the episode, leading to the
accumulation of model uncertainty.

Alternatively, we could leverage the fact that the TDM provides a measure of “reachability” to
segment long-horizon tasks into a sequence of short-horizon tasks that each encapsulate significantly
less uncertainty. Suppose that we can express Tmax = KT , where T represents the horizon for
each short-horizon problem. Our goal is to effectively solve for K − 1 intermediate sub-goals
s∗T , . . . , s

∗
(K−1)T that serve as way-points from the current state to the goal. The sub-goals are

optimized such that the sum of the reachability measures between every consecutive pair of sub-
goals is maximized:

s∗T , . . . , s
∗
(K−1)T = argmax

s2T ,...,s(K−1)T

V (s, sT , T ) +

K−2∑
k=1

V (skT , s(k+1)T , T ) + V (s(K−1)T ,g, T )

(3)

In order optimize the sub-goals, we employ the cross entropy method (CEM). Our objective is
no longer to reach g in Tmax timesteps, but rather to reach s∗T in T timesteps. After T steps,
the objective is to reach s∗2T and so forth. We can interpret this method as a hybrid model-based
and model-free method, where we use a model-free policy at the low level to optimize for short-
horizon problems and a model-based (planning) approach at the high level to optimize for long-
horizon problems. While this planning-based use of TDMs was described in (Pong et al., 2018), the
experiments focused on the model-free component of TDMs, i.e. directly using the goal-conditioned
policy trained with Equation 2; we label this method “model-free TDMs” (MF TDM). In this paper
we provide a concrete instantiation of the planning version of TDMs, which we call “Planning
TDMs.”

4 PLANNING IN HIGH-DIMENSIONAL SPACES

Ideally, we want to solve MDPs with high-dimensional states, such as image-based environments.
One possible approach to this problem is using the raw sensory image observations as direct inputs
to the policy and value function networks and basing the reward function on raw pixel distance
between the current and goal image. However, this formulation may be suboptimal for TDMs and
other methods, because raw pixel distance is often not a semantically meaningful metric for complex
tasks. Rather, we employ variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende
et al., 2014), to provide a latent space that captures the underlying characteristics of the environment,
and also to leverage their role as generative models for sampling meaningful sub-goals. The input
to the VAE is the raw image observation o from the agent, and the output zo is the mean of the VAE
encoding distribution q(z|o). The reward function between the current image o and the goal image
g is defined as

RTDM(zo, zg, t) = −1(t = Tmax)d(zo, zg) (4)

where zo and zg are the mean of the encoding distribution for o and g, respectively. If we have
access to the true states s and g during training time, we can alternatively define our reward as
Equation 2. In either case, the policy and value function networks directly operate on the latent
embeddings, so we only require access to the raw image observations during testing time.

Before training our RL algorithm, we train the VAE using a dataset of images (which ideally cap-
tures the entire range of environment settings). In practice, while the standard VAE formulation
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Figure 1: Full-state results

works sufficiently well in reconstructing images and producing meaningful samples, the distances
between images in latent space (ie. the distances between the latent embeddings of images) are
not semantically meaningful, which may lead to suboptimal RL performance. To address the issue,
we append an additional linear latent dynamics penalty to the standard VAE objective. The linear
dynamics penalty is defined as

d(f(zt,at), zt+1) (5)

where zt and zt+1 are the VAE embeddings for consecutive images ot and ot+1 in the dataset, and
f is a linear model. In practice, this penalty encourages points that are close in state space to also be
close in latent space, inducing a more semantically meaningful latent space.

Once we train the VAE, we fix it as the basis for our representation and proceed to training the TDM
as usual. With this low-dimensional representation, it is feasible to run MF TDMs; however this
representation may still not be suitable for Planning TDMs. The linear dynamics penalty that we
add to the VAE objective imposes strong constraints, causing the induced prior of the model to no
longer be Gaussian. In many instances, there are “holes” in the middle of the latent space that do not
correspond to any images, thus making the space non-dense. This presents a challenge for planning,
as the optimizer may select “invalid” sub-goals that the TDM was never trained on.

To address this issue, we employ a projection network that projects any point in the latent space
back onto the manifold of valid latents. We call this method projected temporal difference model
planning (PTP). Our projection network takes as input a latent z, decodes it to an image ô. and
re-encodes the decoded image back to a latent ẑ. Effectively, the decoded image is somewhat close
to the underlying training distribution for the VAE, so once it is re-encoded the resulting latent is in
the manifold of valid latents. At each iteration of CEM in which we select latents to optimize for,
we transform those latents using our projection network before evaluating them.

5 EXPERIMENTS

We are interested in solving long-horizon tasks, with sample efficiency and asymptotic performance
in mind. We evaluate our method and competing baselines on (1) a 2D pointmass task with a u-
shaped wall and (2) a Sawyer push and reach task in the MuJoCo simulator (Todorov et al., 2012).
Further details for these tasks are provided in the appendix section. For each task, we train our goal-
conditioned policy for any general configuration of the task (ie. the agent starts in any setting and
the goal is any setting). To examine the performance of our method, we test in a restricted setting
in which we pick specific reset and goal settings that correspond to long-horizon tasks. We report
results in the testing phase. We compare our method to model-free TDMs, for short and long-term
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Figure 2: Image-based results

temporal capacities. In addition, we compare to an infinite horizon model-free formulation, and a
random shooting model predictive control (MPC) method as the pure model-based baseline.

5.1 FULL STATE RESULTS

For pointmass, our method learns to solve the task significantly faster than competing baselines. We
note that MPC is unable to solve this simple task, so we exclude it from further consideration in
other experiments. For push and reach, our method is the only method that successfully solves the
task. When optimizing for sub-goals, we do not distinguish between valid and invalid sub-goals,
so we also consider a variant in which we discard any invalid sub-goals (this is the “state penalty”
variant). Even in the absence of the state penalty our method does well — however the state space in
these tasks is relatively dense, and our method may exhibit sub-optimal performance for tasks with
highly non-dense state spaces.

5.2 IMAGE-BASED RESULTS

For image-based tasks, we evaluate exclusively the pointmass environment. We consider both state-
based rewards (see Equation 2) and latent-based rewards (see Equation 4). For state-based rewards,
our method provides marginal performance improvements over competing baselines. In addition,
the linear dynamics penalty for the VAE helps boost RL performance significantly. We note that
the projection contributes a significant improvement in performance for our method, even when the
VAE is trained without linear dynamics. For latent-based rewards, PTP outperforms other baselines
by a significant margin.

6 DISCUSSION AND FUTURE WORK

In this work, we examine the benefits of planning with goal-conditioned policies. For tasks with
simple, low-dimensional state spaces, we show that planning with temporal difference models allows
us to solve long-horizon tasks with greater sample efficiency and asymptotic performance than other
goal-conditioned methods. We then extend this idea to tasks with high dimensional spaces where
the underlying space of valid states is unknown. Using the projection network, we establish that we
can outperform existing baselines on an image-based task.

An interesting avenue for future work is to scale this method for more complex image-based tasks,
such as robotic tasks. Other alternatives to the projection network may be considered, such as flow
models that map noise to the induced prior in latent space. This could establish a more robust
planning space that can allow us to scale up easily to more challenging domains.
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A TASK DESCRIPTIONS

A.1 POINTMASS

Figure 3: Pointmass

The environment consists of a point navigating around a u-shaped wall
in an 8 × 8 unit space. The agent is operated via 2D position control,
and at each time step is restricted to moving up to 0.25 units in any
direction. During the training phase, we consider any valid starting and
goal position for the agent. During the testing phase, we restrict the
agent to start inside the u-wall and the goal to be on the other side of the
u-wall. This constitutes a long-horizon problem, as the agent must learn
to navigate around the wall to reach the goal.

A.2 PUSH AND REACH

The environment consists of a Sawyer robot and a puck on a table. The
goal is for the robot to push a puck to the goal position and also move
its end effector to a separate goal position. The robot is operated via
2D position control. The robot and puck both operate in a 20 cm × 40
cm rectangular space. During the training phase, the goal for the puck
and end effector is any arbitrary position within this space. At resets
however, the end effector and puck are placed within close proximity of
one another, to alleviate the exploration problem of the robot learning to
reach the puck and push it to receive reward. During the testing phase,
this restriction is removed. The puck and end effector are reset within
opposite corners of the rectangular space. The goal puck position is the
initial position of the end effector at reset time, and the goal end effector
position is the initial position of the puck at reset time.

Figure 4: Push and Reach
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