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ABSTRACT

We study the shape of the average reward as a function over the memoryless
stochastic policies in infinite-horizon partially observed Markov decision pro-
cesses. We show that for any given instantaneous reward function on state-action
pairs, there is an optimal policy that satisfies a series of constraints expressed
solely in terms of the observation model. Our analysis extends and improves pre-
vious descriptions for discounted rewards or which covered only special cases.
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1 INTRODUCTION

The problem of maximizing the expected long term reward in partially observable Markov decision
processes (POMDPs) over the set of memoryless stochastic policies has been studied in a number
of recent papers (see, e.g., Ross, 1983; Vlassis et al., 2012; Ay et al., 2013; Montúfar et al., 2015;
Montúfar et al., 2015; Azizzadenesheli et al., 2016; Montúfar & Rauh, 2017; Rauh et al., 2019). An
important question is how to characterize good priors, i.e., constraints, that could be imposed on a
policy model, so as to reduce the complexity of learning, without incurring losses in terms of the
achievable values of the objective. At one extreme, when there is a single problem (POMDP) under
consideration, the full answer to this question corresponds to characterizing an optimal policy for
this particular problem. At the other extreme, when all possible problems are under consideration,
one can impose no constraints at all, since each possible policy will be the unique optimizer of
one particular problem. We are interested in the situation where certain general properties of the
POMDP are given, and how we might translate these properties into policy constraints as described
above, independently of the specific instantaneous reward function.

2 DEFINITIONS

Formally a POMDP is a tuple (W,S,A, α, β,R), where W , S, A are finite sets of world states,
sensor states, and actions, β : W → ∆S is a Markov kernel describing sensor measurements (ob-
servation model), α : W × A → ∆W is a Markov kernel describing world state transitions, and
R : W × A → R is an instantaneous reward function. A policy is a mechanism for selecting ac-
tions. We consider memoryless (and thus time independent) stochastic policies, which are described
by Markov kernels of the form π : S → ∆A, and which we call simply policies. We denote the
set of policies by ∆S,A. The world state and the instantaneous reward are updated at discrete time
steps by iterating β, π, α,R as illustrated in Figure 1. When β is a deterministic injective map, the
observations fully identify the world state, and the POMDP reduces to a Markov decision process
(MDP).

The objective of learning is to find a policy that maximizes some form of expected reward. We will
focus on the average reward over an infinite horizon. We make the standard assumption that for each
fixed policy, the Markov chain of world states is irreducible and aperiodic (e.g., α is strictly positive).
This implies that there is a unique stationary limit distribution pπW ∈ ∆W , which is independent of



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Wt

St

At

Rt

Wt+1

St+1

At+1

Rt+1

Wt+2 . . .

β

α

π

β

α

π

Figure 1: The graphical structure of a POMDP with a memoryless policy.

the initial state distribution µ ∈ ∆W . In this case, the average reward can be written as

R(π) = lim
T→∞

E
[ T−1∑
t=0

1

T
R(Wt, At)

∣∣∣π,W0 ∼ µ
]

=
∑
w

pπW (w)
∑
a

∑
s

π(a|s)β(s|w)R(w, a).

(1)
We will also write ξ(a|w) =

∑
s β(s|w)π(a|s) for the world state policy. The setting of discounted

rewards replaces 1
T by a discount factor γt with γ ∈ (0, 1), which leads to a function that depends

on the start state distribution.

We denote as a task any particular choice of R in a POMDP. Of course other definitions might be
meaningful too, depending on the context.

3 CONSTRAINTS SATISFIABLE BY OPTIMAL POLICIES

We are interested in the following theorem, which provides a certain type of extension of the well
known fact that any MDP has an optimal policy which is memoryless and deterministic. The the-
orem can be interpreted as saying that determinism can be used as a task-agnostic prior for solving
POMDPs.
Theorem 1 (Montúfar & Rauh 2017, Theorem 1). Consider a POMDP (W,S,A, α, β,R). Then
there is a policy π∗ ∈ ∆S,A which satisfies

| supp(π∗(·|s))| ≤ | supp(β(s|·))|, for all s ∈ S,
andR(π∗) ≥ R(π) for all π ∈ ∆S,A.

There exists an optimal policy that randomizes only as many actions as there are states compati-
ble with the current observation. The existence of fully deterministic optimal policies for MDPs,
assigning positive probability to only one action at each observation, follows immediately, since
| supp(β(s|·))| = 1 for MDPs. We note that it is possible to construct examples of POMDPs for
which each optimal memoryless policy attains the bounds specified in the theorem with equality.
One might consider the requirements on the observation model to be somewhat restrictive. How-
ever, recent work (Rauh et al., 2019) shows (for discounted rewards), that if β nearly satisfies these
requirements, then there is a nearly optimal policy that satisfies the specified support constraints.
This means that we can obtain generally applicable task-agnostic priors for approximately optimal
policies.

Theorem 1 was shown using a notion of policy improvement cones for expected discounted rewards.
The average reward case was then obtained by means of limit arguments over the discount factor.
We would like to deduce it based solely on the geometry of the optimization problem. A geometric
approach in this spirit was pursued by Montúfar et al. (2015) based on a decomposition of the
average reward function into a continuum of linear pieces, but obtaining only the constraints for
s ∈ S with | supp(β(s|·))| ≤ 1.

We present a geometric analysis based on a notion of policy improvement cones for average rewards.
We obtain the following refinement of Theorem 1:
Theorem 2. Consider a POMDP (W,S,A, α, β,R). Then there is a policy π∗ ∈ ∆S,A which
satisfies ∑

s′∈S′

| supp(π∗(·|s′))| ≤ |
⋃
s′∈S′

supp(β(s′|·))|+ |S′| − 1, for all S′ ⊆ S,

2
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andR(π∗) ≥ R(π) for all π ∈ ∆S,A.

The statement of Theorem 1 corresponds to the inequalities for S′ ⊆ S, |S′| = 1. In the case of a
deterministic β, the sets supp(β(s′|·)) are disjoint for all s′ ∈ S. In this special case, the constraints
for S′ ⊆ S, |S′| ≥ 2 in Theorem 2 are already implied by the constraints for S′ ⊆ S, |S′| = 1 in
Theorem 1.

4 POLICY IMPROVEMENT CONES FOR AVERAGE REWARDS

Definition 3 (World policy improvement cones). Fix a world policy ξ ∈ ∆W,A. We write ξw =
(ξ(a|w))a∈A ∈ ∆{w},A and ∇ξw = (∂ξ(a|w))a∈A. For any w ∈W define

lξw = ∇ξwR(ξ) ∈ Tξ∆{w},A. (2)

The world policy improvement cone at ξ for a given set W ′ = {w1, . . . , wk} ⊆W is

Lξ,W
′

= {ξ′ ∈ ∆W,A : 〈(ξ′w − ξw), lξw〉 ≥ 0, for w ∈W ′, and ξ′w = ξw, for w ∈W \W ′}. (3)

This is an intersection of |W ′| half-spaces in ∆W ′,A, with fixed values in ∆(W\W ′),A.

Lemma 4 (World policy improvement cones). For any ξ ∈ ∆W,A, W ′ ⊆ W , and ξ′ ∈ Lξ,W ′
, we

haveR(ξ′) ≥ R(ξ).

Proof. Given any world policy ξ ∈ ∆W,A, we write pξW ∈ ∆W for the corresponding stationary
world state distribution, and pξ ∈ ∆W×A for the corresponding joint distribution with pξ(w, a) =

pξW (w)ξ(a|w). The average reward of ξ isR(ξ) = 〈pξ, R〉 =
∑
w,a p

ξ(w, a)R(w, a). Let ξ′ = ξ +∑
i λil

ξ
i ∈ Lξ,W

′
, where i indexes the elements ofW ′. By Proposition 5 below, pξ

′
= pξ+

∑
i µir

ξ
i ,

where rξi = d
dε

∣∣
ε=0

pξ+εl
ξ
i and µi ≥ 0. Since ξ + εlξi ∈ Lξ,W

′
for any i and ε > 0 small enough,

0 ≤ d

dε

∣∣∣∣
ε=0

R(ξ + εlξi ) =
d

dε

∣∣∣∣
ε=0

〈pξ+εl
ξ
i , R〉 = 〈rξi , R〉,

and henceR(ξ′) = 〈pξ, R〉+
∑
i µi〈r

ξ
i , R〉 ≥ R(ξ).

Proposition 5 (Cones of world policies and stationary joint distributions). Consider the map
f : ∆W,A → ∆W×A; ξ 7→ pξ that maps a world policy ξ to the corresponding stationary
joint distribution pξ(w, a) = pξW (w)ξ(a|w). Let W ′ = {w1, . . . , wk}. A cone of the form
LW

′
= {ξ +

∑
i λili : λi ≥ 0, i = 1, . . . , k} ⊆ ∆W,A, where li ∈ Tξ∆{wi},A, i = 1, . . . , k,

maps to a cone of the form f(LW
′
) = {pξ +

∑
i µiri : µi ≥ 0, i = 1, . . . , k} ⊆ ∆W×A, where one

may choose ri as ri = pξ+li − pξ or as ri = d
dε

∣∣
ε=0

pξ+εli , i = 1, . . . , k.

Proof. We first show that f(LW
′
) is a convex cone with extreme rays M i = {pξ + µi(p

ξ+li −
pξ) : µi ≥ 0}, i = 1, . . . , k. For each i, the ray Li = {ξ + λili : λi ≥ 0} is a product of convex sets
(it consists of vectors with all coordinates fixed except one coordinate which is a ray), and hence its
image f(Li) is convex (see Proposition 6 below), which implies f(Li) = {ξ+µiri : µi ≥ 0} = M i,
ri = (pξ+li−pξ). The cone LW

′
is also a product of convex sets, and hence f(LW

′
) is also a convex

set. In fact, any subset W ′′ ⊆ W ′ will produce a convex set. Assuming that f is injective on LW
′
,

this implies that M i are the extreme rays. But the only way f can be non-injective is if pξW (w) = 0
for some w, in which case pξ(w, a) = 0 for all a ∈ A, and w can be excluded.

It remains to show that it is possible to replace the cone generator ri = pξ+li − pξ by ri =
d
dε

∣∣
ε=0

pξ+εli . This follows since the statement of the proposition holds true for any rescaling of
the li.

Proposition 6 (Convex sets of world policies and stationary joint distributions). Consider a set
G ⊆ ∆W,A of world policies. Assume that G is a Cartesian product of convex sets, G = ×wGw,
where each Gw ∈ ∆{w},A is convex. Then the set K ⊆ ∆W×A of stationary joint distributions
corresponding to G is convex.

3
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Proof. The set K ⊆ ∆W×A consists of all joint distributions of the form pξ(w)ξ(a|w), where
pξ(w) is the stationary distribution generated by a world policy ξ, and ξ(a|w) ∈ G. This set can
be described as the intersection of two sets, K = F ∩ J . If both J and F are convex, then clearly
K = J ∩ F is convex. The first set, J , consists of all joint distributions p(w, a) for which the
image p(w,w′) =

∑
a p(w, a)α(w′|w, a) is an element of the Kirchhoff polytope in ∆W×W . This

corresponds to requiring that the marginal is a stationary distribution of the conditional. Since J
is the preimage of a polytope by a linear map, it is an affine set. The second set, F , consists of
all joint distributions whose conditionals have the form p(a|w) = ξ(a|w) for some ξ ∈ G. Now
Proposition 7 below shows that F is convex whenever G is a Cartesian product of convex sets.

Proposition 7 (Montúfar et al. 2015, Proposition 8). Consider a set G ⊆ ∆W,A of world policies.
Assume that G is a Cartesian product of convex sets, G = ×wGw, where each Gw ⊆ ∆A is a
convex set. Then the set F = {p(w)p(a|w) : p(w) ∈ ∆W , p(a|w) ∈ G} ⊆ ∆W×A of all joint
distributions with conditional distributions from G is convex.

Now we translate the improvement cones for world policies to sensor policies. Consider a policy
π ∈ ∆S,A and its corresponding world policy ξ = fβ(π) ∈ ∆W,A, where fβ is the linear map
∆S,A → ∆W,A; π(a|s) 7→

∑
s β(s|w)π(a|s). We can define sensor policy improvement cones as

follows.
Definition 8 (Policy improvement cones). For each sensor state s ∈ S, define

Lπ,s = {π′ ∈ ∆S,A : fβ(π′) ∈ Lξ,Ws , and π′s′ = πs′ , for s′ 6= s}, (4)

where Ws = supp(β(s|·)). This is an intersection of |Ws| half-spaces in ∆{s},A, with fixed values
in ∆(S\{s}),A.

Lemma 9 (Policy improvement cones). For any π ∈ ∆S,A, s ∈ S, and π′ ∈ Lπ,s, we have
R(π′) ≥ R(π).

Proof. This follows immediately by the way the cones Lπ,s are defined, and in view of the world
policy improvement cone Lemma 4.

Lemma 9, together with Lemma 10 below, implies Theorem 1.
Lemma 10 (Montúfar & Rauh 2017, Lemma 5). Let P be a polytope with affine hull V , and let
l1, . . . , lk be vectors in V . For any p ∈ P , let Li,+ = {q ∈ P : 〈li, q − p〉 ≥ 0}. Then

⋂k
i=1 Li,+

contains an element q that belongs to a face of P of dimension at most k − 1.

We see that across all the policy improvement cones, there are only a total of |W | inequalities.
Instead of working with individual cones for each s, we can consider any set of the form WS′ =
∪s′∈S′Ws′ , and

Lπ,WS′ = {π′ ∈ ∆S,A : fβ(π′) ∈ Lξ,WS′ , and π′s = πs, for s ∈W \WS′}. (5)

In this case, Lemma 4, together with Lemma 10, implies that there is an optimal policy π∗ with∑
s′∈S′ | supp(π(·|s′))| ≤ |S′|+ |WS′ | − 1 for all S′ ⊆ S. Note that the (d− 1)-dimensional faces

of ∆S,A are policies with at most |S|+ d− 1 non-zero entries. This proves Theorem 2.

5 DISCUSSION

We introduced a notion of policy improvement cones for the average reward in infinite-horizon
POMDPs with memoryless stochastic policies. This allows us to study the average reward optimiza-
tion problem globally (vs. policy gradients which only formulate local descriptions). We prove the
existence of optimal policies that satisfy a series of constraints. These constraints are independent
of the instantaneous reward function at hand, and hence they can be regarded as task-independent
priors for POMDPs.

The results are formulated in terms of certain properties of the observation model that might be
considered to be restrictive. In order to obtain generally applicable priors for approximate optimal
policies, future work could explore extensions of the stability analysis of Rauh et al. (2019) from
discounted to average rewards.

4
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A ILLUSTRATION

We visualize the geometry of the optimization problem in a small example. Let W = {1, 2},
S = {1, 2}, A = {1, 2}. Then ∆S,A and ∆W,A are squares, and ∆W×A is a tetrahedron. In
Figure 2 we plot these sets, alongside with the values of the average reward, for a fixed random
choice of the world state transition kernel α, a fixed random choice of the reward function R, and
various choices of the observation kernel β.

Figure 2: Top row: Simplex ∆W×A containing the set of feasible stationary joint distributions.
Middle row: Polytope ∆W,A containing the set of feasible world state policies. Bottom row: Policy
polytope ∆S,A. Here R and α are fixed and β is ranging from full observability [1, 0; 0, 1] (left) to
blind [1, 1; 0, 0] (right). Color indicates the average reward (darker is lower). Shown are also the
level sets of the average reward (black), stationary distribution (red), and rows of the world policy
(green). The red and green level sets are linear over ∆W×A, ∆W×A, and ∆S,A.
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