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ABSTRACT

Learning diverse and reusable skills in the absence of rewards in an environment is
a key challenge in reinforcement learning. One solution to this problem, as has been
explored in prior work (Gregor et al., 2016; Eysenbach et al., 2018; Achiam et al.,
2018), is to learn a set of intrinsic macro-actions or options that reliably correspond to
trajectories when executed in an environment. In this options framework, we identify
and distinguish between decision-states (e.g. crossroads) where one needs to make a
decision, as being distinct from corridors (where one can follow default behavior) in
the modeling of options. Our intuition is that identifying decision states would lead
to more interpretable behavior from an RL agent, exposing clearly what the underly-
ing options correspond to. We formulate this as an information regularized intrinsic
control problem using techniques similar to (Goyal et al., 2019) who applied the in-
formation bottleneck to goal-driven tasks. Our qualitative results demonstrate that we
learn interpretable decision states in an unsupervised manner by merely interacting
with the environment.

1 INTRODUCTION

Understanding the right levels of abstractions at which to break down complex tasks (say, “going to the
kitchen”) is an essential skill for building flexible and scalable reinforcement learning agents (Andreas
et al., 2016; Springenberg et al., 2018). Most complex real-world tasks have intrinsic decision states,
followed by phases where one has a default behavior. For example, when navigating to the kitchen, one
might have to head out of the door, take a right, and then take a left.
Thus, the act of “walking to the kitchen” is punctuated by certain decision states, where one switches
from one mode of behavior to another, but beyond that a lot of the sub-tasks have a default mode of
behavior outside of these decision states (say when walking straight in corridors). Understanding these
decision states in an environment (say in context of a navigation task) has the promise to enable better
transfer and understanding of the structure in the environment.
While prior work in this domain Goyal et al. (2019) discovers these decision states and identifies the
default modes of behavior in a task/goal-supervised manner, we aim to do so in an unsupervised manner
using agents which explore the environment to understand what they can control.
Our premise is that the decision states can exist in environments independent of the end goals (e.g.
crossings in a maze). Thus, we set out to explore if one can identify such decision states in a purely
usupervised manner by simply interacting with the environment. We situate ourselves in the hierarchical
reinforcement learning framework of options (Kulkarni et al., 2016), learning a breakdown of a higher
level option into its constitutent decision states. We next elaborate on some related work in this space
spanning learning of options and learning with parameterized default policies.
Options Frameworks. Reward-free methods for option discovery (Gregor et al., 2016; Eysenbach
et al., 2018; Achiam et al., 2018) have been shown to learn a diverse set of options that are useful
for downstream tasks and hierarchical control. These options (which are easiest to think of as macro-
actions) are discovered through related but different objectives in prior work – Gregor et al. (2016)
maximize the number of final states that can be reliably reached by the policy, Eysenbach et al. (2018)
distinguish an option at every state along the trajectory, and Achiam et al. (2018) learns options for
entire trajectories by encoding the sequence of states at regular time intervals.
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One can understand these works as attempting to maximize intrinsic control (IC), namely understanding
the space of macro-actions that meaningfully affect the state of the world. In the most general case, IC
frameworks characterize behavior in the form of trajectories τ = (s0, a0, s1, . . . , sT ), which are then
encoded in a higher level option space Ω. The goal of maximizing the diversity of behavior is achieved
by maximizing the entropy H(τ) of the trajectory distribution while having reliability in producing a
specific behavior corresponding to minimizing the entropy H(τ |Ω) of the option conditional trajectory
distribution, which is essentially viewed as maximizing the mutual information I(Ω, τ) between option
and trajectory as the objective – maxπ Eτ∼π

[
I(Ω, τ)

]
.

But this is far from perfect, since the set of intrinsic options available to an agent are likely to produce
trajectoies with overlapping substructures. For example, when passing through a corridor, the only
modes of action are forward or backward irrespective of option, and distinguishing between options in
these common states is meaningless. Thus it is crucial to identify decision states where options become
more distinguished, and gracefully fall back to default operating behavior in common states.
Default Policies. Recent work in policy compression has focused on learning this default policy when
training on a family of tasks, to be able to re-use behavior common to all tasks. In Galashov et al.
(2018); Teh et al. (2017), a default policy is learnt using a set of task-specific policies which in turn acts
as a regularizer for each policy, while Goyal et al. (2019) learn a default policy using an information
bottleneck on task information and a latent variable the policy is conditioned on. We devise a similar
information bottleneck objective but in an unsupervised setting that learns default behavior to be shared
by all intrinsic options so as to reduce learning pressure on option-specific policies.
Contributions. Our contributions are as follows: 1) we devise a formulation to compute decision states
without reward supervision by augmenting intrinsic control objectives with an information theoretic
regularizer, 2) we show that the proposed formulation is able to identify decision states that are mean-
ingful for discrete 2D environments with countable options.

2 APPROACH

We first describe the objectives from (Gregor et al., 2016) (VIC) which optimizes for intrinsic control
using options. We then describe the information regularizer we construct on top of this approach to
identify decision states implicit in the choices of options. The key idea from Gregor et al. (2016) is to
maximize the mutual information (Cover & Thomas, 2006) between an option (Ω) and the final state in
a trajectory sf given a current state s0, i.e. I(sf ,Ω|s0). Gregor et al. (2016) formulates the following
lower bound on this mutual information:

I(Ω, sf |s0) ≥ EΩ∼p(Ω|s0),sf∼pJ (sf |Ω,s0)

[
log

qν(Ω|sf , s0)

p(Ω|s0)

]
(1)

Figure 1: Regularized option conditioned pol-
icy π(at|st,Ω). We impose a bottleneck,
minimizing I(at,Ω|st) to allow discovery of
decision states, where Ω influences actions at
(despite the bottleneck).

Where p(Ω) is a prior on options, pJ(·|Ω, s0) is the (un-
known) distribution of final states given the option which
we can sample from by executing actions in the environ-
ment, and q(·) is a variational approximation to the true
posterior on options given a final state sf . We next describe
our information bottleneck regularizer which we employ in
addition to the intrinsic control objective above.

Information Bottleneck Regularizer. The VIC framework
utilizes options in decision making by parameterizing a pol-
icy π(at|st,Ω) which modulates the behavior of the policy
by conditioning on the option of interest Ω, sampled once
for an entire trajectory. Our regularizer focuses on a partic-
ular parameterization of this policy, and constructs a bottle-
neck inspired by (Goyal et al., 2019).
Fig. 1 shows the proposed construction of the option condi-
tioned policy. At the beginning of every episode, an option
Ω is sampled which guides the behavior of the agent for the
entire episode. At every timestep t in the episode, given the
current state (st) and the (global) option (Ω), we compute
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an intermediate representation zt. This intermediate representation is used along with the state st to
choose an action at to perform at the current timestep t.
Similar to (Goyal et al., 2019), we impose a constraint that says that the actions at should have low
mutual information with the options, i.e. min I(at,Ω|st). This is a way of providing the inductive
bias to the model that there are states with default behavior (where one need not reason about the
chosen options). Further, this allows us to identify decision states by tracking states where the mutual
information is high (despite the constraint). By data processing inequality (Cover & Thomas, 2006),
we know that I(at,Ω|st) ≤ I(zt,Ω|st). Thus, we minimize the upper bound instead, yielding the
following regularized objective (c.f. Goyal et al. (2019)):

max
π

Jπ = Es1,··· ,sf∼π
[
I(Ω, sf |s0)− β

∑
t

I(Ω, zt|st)
]

(2)

where β controls the strength of the regularization. The first term I(Ω, sf |s0) is optimized using Eqn. 1.
We next explain how we do the optimization of the second term. We first write I(Ω, zt|st) as:

EΩ∼p(Ω),zt∼p(zt|st,Ω)

[
log

p(zt|Ω, st)
p(zt|st)

]
(3)

We then assume a variational approximation q(zt) for p(zt|st), and using the fact that
DKL[p(zt|st)||q(zt)] ≥ 0, we get a the following lower bound (similar to Goyal et al. (2019)):

I(Ω, zt|st) ≥ EΩ∼p(Ω),zt∼p(zt|st,Ω)

[
log

p(zt|Ω, st)
q(zt)

]
(4)

Putting these together, the overall objective that we optimize for is1:

max
θ,φ,ν

J̃(θ, φ, ν) = EΩ∼p(Ω),zt∼p(zt|st,Ω),s1,··· ,sf∼πθ

[
log

qν(Ω|sf )

p(Ω)
− β

∑
t

log
pφ(zt|st,Ω)

q(zt)

]
(5)

Decision State Identification. We identify decision states in the environment as states where Eqn. 4 is
relatively high. One could also consider looking at decision-states corresponding to individual options,
we chose the expectation over the entire option vocabulary to take into account all options intrinsi-
cally available to the agent - we hypothesize, decision states agreed upon by options across the entire
vocabulary are more likely to correlate to structural regularities in the environment.

3 EXPERIMENTS

(a) 5x5 Empty (b) Final States - (Ω1) (c) Final States - (Ω2) (d) Decision States

Figure 2: Qualitative results on the 5x5 Empty grid world (Fig-
ure. 2(b)) where the agent is always spawed at the center and trained
with two discrete intrinsic options. The two learnt options (2(c))
show a final state frequency (normalized) in two distinct halves of the
grid. Figure. 2(d) shows the heatmap of KL values (normalized) for
Ep(Ω)[DKL(p(zt|st,Ω)||q(z))], indicating decision states.

As a proof of concept, we demon-
strate the emergence of decision
states based on the unsuper-
vised objective in two simple
two-dimensional grid-world envi-
ronments with a fully observable
state-spaces. Our environments are
inherited from MiniGrid set of envi-
ronments (Chevalier-Boisvert et al.,
2018). The agent’s action-space
includes four cardinal movement di-
rections - Up, Down, Left, Right and
a Stay action. We use a reactive pol-
icy and Advantage Actor-Critic (Wu
et al., 2017) for our experiments.
We train agents in an episodic
setting where termination happens
after fixed time-steps T (we set T = 8). In practice, we found that it was hard to obtain reasonable
results by learning both the terms in the objective to be optimized for from scratch and therefore, we
optimize the intrinsic objective itself for ∼ 8k episodes (i.e., we set β = 0) after which we turn on
the bottleneck term and let β grow linearly for another ∼ 8k episodes to get feasible outcomes at
convergence.

1In our experiments, we further augment the objective with a maximum-entropy bonus to encourage sufficient
exploration of the state-space.
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(a) Single Corridor (b) Final States (c) Decision States

Figure 3: Qualitative results on the 5x5 Single-
Corridor Room environment (Figure. 3(a)) where
the agent is always spawed at the entrance of the
room and trained with 32 discrete intrinsic op-
tions. The learnt options (3(b)) show a final state
frequency (normalized) in the grid. Figure. 3(c)
shows the heatmap of KL values (normalized) for
Ep(Ω)[DKL(p(zt|st,Ω)||q(z))], indicating decision
states.

Empty 5x5 Grid. Fig. 2 shows an empty 5x5 grid
where the agent is always spawned at the center of
the grid. Our option space is discrete with 2 choices
Ω = {Ω1,Ω2}. We observe that the option termi-
nation states lie in mutually exclusive halves of the
environment. (see Fig. 2(c)). Furthermore, upon
identifying decision states as per Eq. 4, we find they
emerge along the vertical line separating the option
termination states (Figure. 2(c)). Presumably, these
are the states where an agent needs to undertake
option-informed actions in order to decide which
cluster of final states to go to. Further, once we get
closer to the final states default behavior emerges,
i.e. the states in the vicinity of final states are not
decision states.
Single-Corridor Room. Fig. 3(a) shows an environ-
ment which consists of a single-cell corridor leading
up to an empty room. The agent is always spawned
at the entrance of the room. Interestingly, in Fig. 3,
we found it difficult for reasonable behavior to emerge when the number of options provided to the
agent is less and therefore, we conduct our experiments with 32 options. Unlike the empty 5x5 grid, the
final states (see Fig. 3(b)) associated with the learnt set of options are more concentrated towards the
bottom half of the room. However, note that this is an overcomplete setting – the number of available
options is more than the number of cells the agent can occupy. Thus, at the very least, one would expect
one option to cover every single cell in the environment. Furthermore, we find that decision states (see
Fig. 3(c)) emerge near the mouth of the corridor and along a horizontal line separating the bottom and
top halves of the room – where a decision would indicate which half of the room to go to.
Initial State Distribution. From our experiments, we observed that the emergence of interpretable
decision states while optimizing Eqn. 5 is also sensitive to where the agent is spawned across multiple
training episodes. We find that spawning the agent unformly at random at a cell in the environment
resulted in a fairly smooth and uniform bottleneck map (similar to Fig. 2(d) and 3(c)), making it hard to
reason about the emergent decision states in an interpretable manner. Therefore, we stick to spawning
the agent at the same location in the environment across multiple episodes of training.2

4 CONCLUSION

We introduce a method to discover decision states inherently present in an environment without any
task-specific reward supervision by using an intrinsic control objective augemented with an information-
theoretic regularizer. As a proof of concept, we show that our proposed formalism is capable of iden-
tifying decision states for a simple 2D discrete grid-world environment in addition to partitioning the
state-space into regions which can be reliably traversed for individual options. In terms of extensions
we intend to show the following:
Constrained Environments. We intend to transfer the above objective to more complex (maze-like)
environments to demonstrate that decision states do indeed emerge at states where a default mode of
behavior is unclear. Additionally, we aim to show this with a larger option vocabulary so as to capture
more higher-level modes of action corresponding to these decision states.
Transfer. Secondly, as a part of future work, we would like to study how this identification of decision
states and default modes of behavior allow us to adapt to goal-driven settings in the same environments.
Given the the assumption that these decision states capture structural regularities in the environment,
properly utilizing them via a hierarchical planner-controller architecture should lead to improved sample
efficiency when transferring to goal-driven tasks.

2We understand that this limits the utility of options learned throughout the optimization process as the agent
would not have picked an option at multiple cells (except for the fixed spawn location) in the environment.
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A APPENDIX

A.1 TRAINING DETAILS

We now go over a few details of the entire training pipeline, starting with representation used for agent’s
state, the convergence criterion used for the optimization process and how we incorporate the option-
curriculum from Achiam et al. (2018) to learn a meaningful and reliable set of options.
State Representation The state of the agent is fully characterized by the grid configuration and the
agent’s position in the grid. We represent the state as a multi-channel image, where each channel
corresponds to a specific object type present in the grid. This multi-channel representation essentially
generalizes the notion of an occupancy grid. These grids are then processed using a shallow convolution
network. The learnt representation is used by both the option encoder p(z|s,Ω) and the policy head
π(a|s, z).
Convergence Criterion We first restate the objective function we optimize in our framework. The
overall objective function is as follows:

max
θ,φ,ν

J̃(θ, φ, ν) = EΩ∼p(Ω),zt∼p(zt|st,Ω),s1,··· ,sf∼πθ

[
log

qν(Ω|sf )

p(Ω)
− β

∑
t

log
pφ(zt|st,Ω)

q(zt)

]
(6)

where the first term log
qν(Ω|sf )
p(Ω) is a variational approximation for I(Ω, sf |s0), mutual information

between an option Ω and the final state sf reached by an agent following option-conditioned policy
π(a|s,Ω). It can be interpreted as a measure of control (empowerment) agent has in the environment.
Empowerment can also be interpreted as the number of states the agent can reliably reach in the en-
vironment. Since it is a proxy for coverage of state-space achieved by the agent, we can use it as a
convergence criterion for training as we expect the agent to have learnt a reliable and discriminative
option space when it reaches high empowerment value. We terminate the optimization process when
empowerment staturates after reaching a high value.
Option Curriculum It is standard to have a fixed-sized discrete option space Ω with a uniform pior
Gregor et al. (2016). However, learning a meaningful option space with larger option vocabulary size
|Ω| = K has been reported to be difficult Achiam et al. (2018). We adopt a curriculum based approach
proposed in Achiam et al. (2018) where vocalubary size is gradually increases as the option decoder
qν(Ω|sf ) becomes more confident in mapping back the final state back to the corresponding option
sampled at the beginning of the episode. More concretely, whenever qν(Ω|sf ) > 0.75 (this treshold
was chosen through hyperparameter tuning), the option vocabulary size increases according to

K ← min

(
int
(

1.5×K + 1
)
,Kmax

)
For our experiments, curriculum starts with K = 2 and and the curriculum based learning ends when
K = Kmax (Kmax = 32 for our experiment).
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