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ABSTRACT

We propose learning from teleoperated play data as a way to scale up multi-task
robotic skill learning. Learning from play (LfP) offers three main advantages:
1) It is cheap. Large amounts of play data can be collected quickly as it does
not require scene staging, task segmenting, or resetting to an initial state. 2)
It is general. It contains both functional and non-functional behavior, relaxing
the need for a predefined task distribution. 3) It is rich. Play involves repeated,
varied behavior and naturally leads to high coverage of the possible interaction
space. These properties distinguish play from expert demonstrations, which are
rich, but expensive, and scripted unattended data collection, which is cheap, but
insufficiently rich. Variety in play, however, presents a multimodality challenge
to methods seeking to learn control on top. To this end, we introduce Play-LMP
(play-supervised latent motor plans), a method designed to handle variability in
the LfP setting by organizing it in an embedding space. Play-LMP jointly learns
1) reusable latent plan representations unsupervised from play data and 2) a sin-
gle goal-conditioned policy capable of decoding inferred plans to achieve user-
specified tasks. We show empirically that Play-LMP, despite not being trained
on task-specific data, is capable of generalizing to 18 complex user-specified ma-
nipulation tasks with average success of 85.5%, outperforming individual models
trained on expert demonstrations (success of 70.3%). Furthermore, we find that
play-supervised models, unlike their expert-trained counterparts, 1) are more ro-
bust to perturbations and 2) exhibit retrying-till-success. Finally, despite never
being trained with task labels, we find that our agent learns to organize its latent
plan space around functional skills. Videos of our experiments are available at
https://sites.google.com/corp/view/sslmp

1 INTRODUCTION

Learning from play is a fundamental and general method humans use to acquire a repertoire of
complex skills and behaviors (Wood & Attfield (2005)).

In this work, we propose learning from play data (LfP), or “play-supervision”, as a way to scale
up multi-task robotic skill learning. A human operator teleoperates the robot in a playground envi-
ronment, interacting with all the objects available in as many ways that they can think of. Humans
provide the necessary properties of curiosity, boredom, and affordance priors to guide rich object
play. After this is collected, we learn goal-conditioned control self-supervised on top. Examples of
the play data fed into our system are shown in Fig. 3. We underline that this data is not task specific,
but rather intends to cover as much as possible of the full object interaction space allowed by the
environment.

Teleoperation play data is 1) Cheap: it involves no scene staging, task segmenting, or resetting.
2) General: It relaxes the need for a discrete, predefined task distribution. 3) Rich. Play stresses
“means over ends” and naturally lead to high coverage of the possible interaction space. In this way,
LfP compares favorably to both expert demonstrations–which are rich, but not scalable, and scripted
collection–which is highly scalable, but insufficiently rich to learn complex manipulation.

However, the “repeat, but vary” property of play interactions presents a multimodal representation
learning challenge to methods seeking to learn control on top. Policies must be expressive enough
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Figure 1: Play-LMP: A single model that self-supervises control from play data, then generalizes
to a wide variety of manipulation tasks. Play-LMP learns to recognize and organize a repertoire of
behaviors executed during play in a latent plan space, then reuse them to achieve user-specified
goals.

to account for all the possible ways to reach a given goal. Our approach, described in 2.2, mod-
els this variation explicitly, by learning to recognize a repertoire of reusable behaviors from play
unsupervised and organize them in an embedding space. In this paper, we introduce the follow-
ing contributions: 1) Learning from play (LfP), or “play-supervision”, a paradigm for scaling up
multi-task robotic skill learning by self-supervising on cheap and rich user teleoperated play data.
We show empirically its benefits over learning from segmented demonstrations (LfD), especially
in regards to scalability, robustness to perturbations, and failure recovery. 2) Play-LMP, a method
that jointly learns reusable latent plan representations from play data and goal-conditioned control,
capable of generalizing to a wide variety of complex user-specified manipulation tasks.

2 METHOD

2.1 PLAY DATA

Consider play data, an unbounded sequence of states and actions corresponding to self-guided, re-
peated, non-stereotyped object interaction between an agent and it’s environment.

D = {(s1, a1), (s2, a2), · · · , (sT , aT )} (1)

In our experiments, we define play data as the states and actions logged during human play teleop-
eration of a robot in a playground environment. Find an example of such data in Fig. 3.

2.2 PLAY-LMP

The presence of multiple action trajectories for the same (current state, goal state) pair presents a
challenge to models seeking to learn goal-conditioned control in the form of counteracting action
labels. This can be considered a multimodal representation learning problem: policies must be
powerful enough to model all possible high-level behaviors that lead to the same goal outcome.

With this motivation in mind, we introduce Play-LMP (play-supervised latent motor plans), a hierar-
chical latent variable model for learning goal-conditioned control. Play-LMP simultaneously learns
1) reusable latent plan representations from play data and 2) plan and goal-conditioned policies,
capable of decoding learned latent plans into actions to reach user-specified goal states. We call the
representation space learned by Play-LMP “latent plan space”. The intent is that individual points in
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the space correspond to behaviors recognized during play that got the agent from some initial state
to some final state. Local regions of plan space should correspond to distinct solutions to the same
task. In this way, we aim for Play-LMP to explicitly model the “multiple solutions” problem in play
data, relieving the policy of that effort. At a high level, the architecture consists of three modules: a
plan recognizer, a plan proposer, and a goal and plan conditioned policy. We now describe each of
the modules in detail and the losses used to train them.

2.2.1 PLAN RECOGNIZER

Consider a sequence of state action pairs τ of window length κ sampled at random from the play
dataset D:

τ = {(sk:k+κ, ak:k+κ)} ∼ D (2)

We define a stochastic sequence encoder, Φ, which takes as input τ and outputs a distribution over
plans in latent space. Concretely, Φ is a bidirectional RNN with parameters θΦ, mapping from τ to
means and variances:

µΦ, σΦ = Φ(τ ; θΦ) (3)

The purpose of this network is to act as “plan recognition”, identifying which region of latent space
the behavior executed during play corresponds to. At training time, an individual latent plan z is
sampled from this distribution via the “reparameterization trick” (Kingma & Welling (2013)) and
handed to a plan and goal conditioned policy (described in 2.4) to be decoded into actions.

2.3 PLAN PROPOSER

We also define a stochastic plan proposal network, Ψ, which maps initial state si and goal state sg
to a distribution over latent plans. Concretely, Ψ is an MLP with parameters θΨ, mapping from
concatenated si and sg to means and variances in the same latent plan space as Φ1:

µΨ, σΨ = Ψ(si, sg; θΨ) (4)

The goal of this network is to learn to represent the full distribution of possible behaviors that an
agent could execute to get from a particular initial state to a particular goal state.

Φ and Ψ are co-trained by minimizing the KL divergence between the two distributions:

LKL = KL
(
N (z|µΦ, diag(σ2

Φ)) || N (z|µΨ, diag(σ2
Ψ))
)

(5)

Intuitively, LKL forces the plan distribution output by the planner Ψ to place high probability on
actual latent plans recognized during play. Simultaneously it enforces a regular geometry over codes
output by the plan recognizer Φ, allowing plausible plans to be sampled at test time from regions of
latent space that have high probability under the conditional prior Ψ.

2.4 TASK AGNOSTIC, GOAL AND LATENT PLAN CONDITIONED POLICY

Finally, we define a policy π, a stochastic RNN (parameterized by θπ) that takes as input current
state st, goal state sg , and a sampled latent plan z, and outputs action at.

The policy is trained via a maximum likelihood loss Lπ to reconstruct the actions in the sampled
play sequence τ 2:

1For simplicity, we choose a unimodal multivariate Gaussian to represent distributions in latent plan space;
nothing in principle stops us from using more complicated distributions.

2We can optionally also have the decoder output state predictions, and adds another loss term penalizing a
state reconstruction loss.
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Lπ = − 1

κ

k+κ∑
t=k

ln
(
π(at|st, sg, z)

)
(6)

2.5 FULL OBJECTIVE

Following Higgins et al. (2017), we introduce a weight β, controlling LKL’s contribution to the total
loss. Setting β <1 was sufficient to avoid “posterior collapse” (Bowman et al. (2016)), a commonly
identified problem in VAE training in which an over-regularized model combined with a powerful
decoder tends to ignores the latent variable z. The full Play-LMP training objective is:

LLMP =
1

κ
Lπ + βLKL (7)

We describe the full Play-LMP minibatch training pseudocode in Algorithm 1.

2.6 ZERO-SHOT CONTROL AT TEST TIME

At test time, we use Play-LMP to achieve user-specified manipulation goals in zero shot. Given
current state sc and user specified goal sg , the agent infers a distribution over plans, samples one,
then decodes it into actions to achieve the goal. Note that we allow the agent to resample new latent
plans every κ steps (matching the planning horizon it was trained with). See Fig. 2 for details.

2.7 PLAY-GCBC

We also define Play-GCBC (play-supervised goal conditioned behavioral cloning). The training
procedure is similar to Play-LMP, but has no explicit latent plan inference. We train an RNN,
conditioned on current state st and goal state sg to reconstruct actions in a sampled play sequence
τ . See Algorithm 2 for full minibatch training pseudo-code.
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Figure 2: Task-agnostic policy inference. The policy is conditioned on a latent plan which is
sampled once from a plan distribution (inferred from the current and goal states). The policy is also
conditioned on the current state as well as the goal state desired by the user.
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3 EXPERIMENTS

We explore whether Play-LMP , a single general purpose policy trained on non-task specific data,
can generalize to 18 user-specified manipulation tasks. A complete description of each task is avail-
able in Appendix 6.1. We compare Play-LMP to 18 individual behavioral cloning policies, trained
on expert demonstrations for each task. Additionally we investigate whether decoupling latent plan
inference and plan decoding (Play-LMP) generalizes better than coupled plan and action inference
(Play-GCBC).

In Fig. 5, we find that Play-LMP generalizes to 18 user-specified manipulation tasks with an aver-
age success of 85.5%, outperforming expert-trained demonstrations, who reach an average 70.3%.
Additionally, we find that endowing play-supervised models with latent plan inference helps gen-
eralization to downstream tasks, with Play-LMP significantly outperforming Play-GCBC (average
success of 85.5% vs. 78.4% respectively). Results are summarized in table 1.

Furthermore, we find that play-supervised models, unlike their expert-trained counterparts, show
stronger robustness to perturbations (Appendix 6.2) and emergent “retry until success” behavior
(Appendix 6.3).

Finally, we investigate the latent plan space learned by Play-LMP . Surprisingly, we find that despite
never being trained explicitly with task labels, Play-LMP appears to organize its latent plan space
functionally. See 7 for details.

4 RELATED WORK

Robotic learning methods generally require some form of supervision to acquire behavioral skills
– conventionally, this supervision either consists of a reward signal, as in reinforcement learning
Sutton & Barto (2018); Kober et al. (2013); Deisenroth et al. (2013), or demonstrations, as in imita-
tion learning Pastor et al. (2009); Argall et al. (2009). Both of these sources of supervision require
considerable human effort to obtain: reward functions must be engineered by hand, and demonstra-
tions must be provided manually for each task (Zhang et al. (2017); Rahmatizadeh et al. (2017);
Rajeswaran et al. (2017); Duan et al. (2017)). We instead aim to learn general-purpose policies that
can flexibly accomplish a wide range of user-specified tasks, using data that is not task-specific and
is easy to collect.

Our method learns goal-conditioned control, which has been explored extensively in the literature
for reinforcement learning Kaelbling (1993); Pong et al. (2018); Nair et al. (2018); Schaul et al.
(2015); Andrychowicz et al. (2017); Levy et al. (2017); Rauber et al. (2017); Cabi et al. (2017);
Sukhbaatar et al. (2017), as well as for control via inverse models Agrawal et al. (2016); Nair et al.
(2017); Christiano et al. (2016); Torabi et al. (2018).

Our work on learning latent plans is most related to Hausman et al. (2018), who present a method
for reinforcement learning of closely related manipulation skills, parameterized via an explicit skill
embedding space. They assume a fixed set of initial tasks at training time, with access to accompa-
nying per task reward functions to drive policy and embedding learning. Our method, in contrast,
relies on unsegmented play data with no predefined task distribution.

Our self-supervised learning method for learning latent plans relates to other works in self-
supervised representation learning from sequences Wang & Gupta (2015); Misra et al. (2016); Ser-
manet et al. (2018). It decouples high and low level planning to achieve better task generalization, a
strategy well studied in the literature (Sermanet et al. (2009)).

Lastly, our work is related to prior research on few-shot learning of skills from demonstrations (Finn
et al. (2017); Wang et al. (2017); James et al. (2017); Alet et al. (2018); Duan et al. (2017)). While
our method does not require demonstrations to perform new tasks – only the goal state – it can
readily incorporate demonstrations simply by treating each subsequent frame as a goal.

5 CONCLUSION

In this work, we emphasize the benefits of training a single, task-agnostic, goal-conditioned policy
on unstructured, unsegmented play data, as opposed to training individual models from scratch for
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each task. We stress that play data strikes a good balance on the cost-richness tradeoff, compared
to expensive expert demonstrations and insufficiently rich scripted collection. We introduce a self-
supervised plan representation learning and goal-conditioned policy learning algorithm, Play-LMP,
designed to scale to a difficult behavioral cloning regime with large amount of natural variability in
the data. Surprisingly we find that its latent plan space learns to embed task semantics despite never
being trained with task labels. Finally we find that models trained on play data are far more robust
to perturbation than models trained solely on positive demonstrations, and exhibit natural failure
recovery despite not being trained explicitly to do so.
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6 APPENDIX

Algorithm 1 Training Play-LMP
1: Input: Play data D : {(s1, a1), · · · , (sT , aT )}
2: Randomly initialize model parameters θ = {θΦ, θΨ, θπ}
3: while not done do:
4: Sample a sequence τ = {(sk:k+κ, ak:k+κ)} ∼ D
5: Set current and goal state: si ← sk, sg ← sk+κ

6: Encode the sequence τ : µΦ, σΦ = Φ(τ ; θΦ)
7: Encode si and sg: µΨ, σΨ = Ψ(si, sg; θΨ)
8: Compute KL loss using Eq. 5.
9: Compute action loss using Eq. 6.

10: Update θ by taking a gradient step to minimize Eq. 7.

Algorithm 2 Training Play-GCBC
1: Input: Play data D : {(s1, a1), · · · , (sT , aT )}
2: Randomly initialize model parameters θGCBC .
3: while not done do:
4: Sample a sequence τ = {(sk:k+κ, ak:k+κ)} ∼ D
5: Set current and goal state: si ← sk, sg ← sk+κ

6: Compute action loss
LGCBC = − 1

κ

∑k+κ
t=k ln

(
πGCBC(at|st, sg)

)
7: Update θGCBC by taking the gradient step to minimize

LGCBC .

6.1 TASKS DESCRIPTIONS

Here we list the 18 tasks we use to evaluate Play-LMP, Play-GCBC, and BC at test time.

• Grasp lift: Grasp a block out of an open drawer and place it on the desk surface.

• Grasp upright: Grasp an upright block off of the surface of the desk and lift it to a desired
position.

• Grasp flat: Grasp a block lying flat on the surface of the desk and lift it to a desired position.

• Open sliding: Open a sliding door from left to right.

• Close sliding: Close a sliding door from right to left.

• Drawer: Open a closed desk drawer.

• Close Drawer: Close an open desk drawer.
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• Sweep object: Sweep a block from the desk into an open drawer.
• Knock object: Knock an upright object over.
• Push red button: Push a red button inside a desk shelf.
• Push green button: Push a green button inside a desk shelf.
• Push blue button: Push a blue button inside a desk shelf.
• Rotate left: Rotate a block lying flat on the table 90 degrees counter clockwise.
• Rotate right: Rotate a block lying flat on the table 90 degrees clockwise.
• Sweep left: Sweep a block lying flat on a table a specified distance to the left.
• Sweep right: Sweep a block lying flat on a table a specified distance to the right.
• Put into shelf: Place a block lying flat on a table into a shelf.
• Pull out of shelf: Retrieve a block from a shelf and put on the table.

success training
with ∼0.4m training collection shots

Method success % perturbations data cost per task
BC 70.3%± 11.7 23.2% labeled expensive 100
Play-GCBC 77.9%± 2.2 68.3% unlabeled cheap 0
Play-LMP 85.5% ± 1.7 78.8% unlabeled cheap 0

Table 1: 18-task success.

6.2 ROBUSTNESS

In Fig. 6, we see how robust each model is to variations in the environment at test time. To do so,
prior to executing trained policies, we perturb the initial position of the robot end effector. We find
that the performance of policies trained solely from positive demonstration degrades quickly as the
norm of the perturbation increases, and in contrast, models trained on play data are more robust to the
perturbation. We attribute this behavior to the well-studied “distribution drift” problem in imitation
learning (Ross et al. (2011)). Intuitively, models trained on expert demonstrations are susceptible to
compounding errors when the agent encounters observations outside the expert training distribution.
In interpreting these results we posit 1) the lack of diversity in the expert demonstrations allowed
policies to overfit to a narrow initial starting distribution and 2) a diverse play dataset, with repeated,
non-stereotyped object interaction and continuous collection, has greater coverage of the space of
possible state transitions. This would make it more difficult for an initial error (or perturbation) to
put the agent in an observation state outside its training distribution, ameliorating the compounding
drift problem.

6.3 EMERGENT RETRYING

We find qualitative evidence that play-supervised models make multiple attempts to retry the task af-
ter initial failure. In Fig. 8 we see an example where our Play-LMP model makes 3 attempts to close
a sliding door before finally achieving it. Similarly in 9, we see that the Play-LMP model, tasked
with picking up an upright object, moves to successfully pick up the object it initially had knocked
over. We find that this behavior does not emerge in models trained solely on expert demonstrations.
We posit that the unique “coverage” and “incompletely functional” properties of play lend support
to this behavior. A long, diverse play dataset covers many transitions between arbitrary points in
state space. We hypothesize despite initial errors at test time lead the agent off track, it might still
have (current state, goal state) support in a play dataset to allowing a replanning mechanism to suc-
ceed. Furthermore, the behavior is “incompletely functional”–an operator might be picking a block
up out of a drawer, accidentally drop it, then pick it right back up. This behavior naturally contains
information on how to recover from, say, a “pick and place” task. Furthermore, it would discarded
from an expert demonstration dataset, but not a play dataset.

9



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Figure 3: Example of play data: here we display frames sampled every second from a same
sequence and ordered from left to right and top to bottom. We see the human operator engaging in
self-guided interaction with a rectangular object through VR teleoperation. In this case, the operator
chooses to pick up the object, push it around, uses it to push the door to the left, drops the object
inside the cabinet, then finally drops the object off the table. Our play dataset consists of 3 hours
of unscripted continuous play similar to this sequence. Note that subsequences could be considered
task demonstrations, e.g. when the agent places the block inside the shelf. Although, they might
not necessarily be expert demonstrations, but rather incompletely functional, containing misses,
inefficient behavior, etc. Also note that not all the behaviors observed during play are evaluated, e.g.
when the agent drops the object off the table or opens the door with the block.

Figure 4: Example of a supervised demonstration sequence labeled and segmented for the ”slid-
ing” task.
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Figure 5: 18-tasks average success when self-supervising on cheap play data (left), versus training
with direct supervision from expensive positive demonstrations (right). A single task-agnostic Play-
LMP policy not trained on any task-specific data outperforms 18 specialized policies, each trained on
individual expert task demonstrations. The best model trained with play-supervision (LMP) reaches
an average of 85.5% success in 0-shot training, while the best expert-supervised model (BC) reaches
70.3% success in 100-shot (per-task) training.
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Figure 6: Robustness to variations in starting positions compared to the observed sequence from
which the goal is extracted. With no perturbations, the successes of Play-LMP, Play-GCBC and BC
are 85%, 78% and 70% respectively. However with a perturbation of ∼0.4 meters, successes drop
to 79%, 68% and 23% respectively. The Play-LMP model is the most robust to changes to initial
agent position.
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Figure 7: Latent plan space t-SNE. Despite never being trained with task labels, Play-LMP learns
to organize a learned latent plan space with respect to tasks. We embed 512 randomly selected
windows from the play dataset as well as all validation task demonstrations, using the Φ plan recog-
nition model. Embedded positive task demonstrations are colored by task type, random embedded
play sequences are colored grey.
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Figure 8: Naturally emerging retrying behavior: example run of Play-LMP policy on ”close
sliding” task (sliding door left to right). The policy is aiming the reach the goal state (left), fails
multiple times but retries without being explicitly asked to and is successful at the 3rd attempt.
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Figure 9: Naturally emerging retrying behavior: example run of Play-LMP policy on ”grasp
upright” task (grasping an object in upright position). The agent fails initially, missing the block at
first then knocking it over, then recovers successfully–picking up the knocked over block.
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