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ABSTRACT

Reinforcement learning agents can benefit from access to a model of the envi-
ronment dynamics, for example by planning or generating simulated experience.
For many tasks of interest, dynamics models are not known a priori and so must
be learned from experience. Current methods for learning dynamics models usu-
ally minimize prediction losses covering one or a few time steps; however, these
training procedures do not enforce the quality of long-horizon predictions, which
limits the scope of model-based methods to short-horizon tasks. We propose in-
stead to train dynamics models with an objective function based on the infinite
horizon discounted sum of per-timestep model losses: the total discounted model
loss (TDML). Computing this objective poses a challenge because in a naive im-
plementation of a multistep prediction loss, the computation cost scales linearly
with the horizon; we propose a method for approximating the TDML in constant
time using a model learned by temporal difference methods. We evaluate our ap-
proach by comparing the long-horizon prediction accuracy of dynamics models
trained using either our TDML approximator or a one-step prediction loss func-
tion, and in the preliminary results we report here, we find that models trained
with TDML are better at predicting the far future.

1 INTRODUCTION

In model-based reinforcement learning (MBRL), an agent uses a model of its environment dynam-
ics to improve task performance. Models can be used to generate simulated experience (Feinberg
et al., 2018; Kaiser et al., 2019), to plan (Silver et al., 2016; Nagabandi et al., 2018), to provide
side information for an agent (Weber et al., 2017), or to enforce safety requirements (Dalal et al.,
2018; Berkenkamp et al., 2017). When an exact model of the environment is not given a priori, an
approximate model of the dynamics must be learned.

Applying approximate models to long-horizon tasks is difficult, because model predictions can di-
verge from reality due to accumulating errors. For this reason, practitioners have sometimes found it
necessary to use prediction horizons that are shorter than the length of the full task (Nagabandi et al.,
2018; Kurutach et al., 2018; Kaiser et al., 2019), but this limits the applicability of those methods to
cases where short-term optimal behavior correlates well with long-term optimal behavior.

We argue that the difficulty of applying MBRL to long-horizon tasks stems from a misalignment
between how dynamics models are trained and how they are used. It is common to train dynamics
models with a 1- or n-step prediction loss, where n is small, even when using the models to predict
many timesteps into the future. Ideally, we would directly train dynamics models to accurately
forward-simulate through the far future, but the natural approach—of constructing an n-step loss
function where n is large—is computationally intractable, as the number of forward and backward
passes scales with n. To make progress on this problem, we make three contributions:

1. we propose to use a new objective for model-learning: the total discounted model loss
(TDML), which accounts for model accuracy over the infinite horizon;

2. we propose a temporal difference algorithm for efficiently approximating TDML in con-
stant time;
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3. we demonstrate how the TDML approximator can be used to train accurate dynamics mod-
els that perform well at predicting the far future.

To evaluate the effectiveness of our model training approach, we compare the accuracy of long
horizon predictions for equivalent models trained by optimizing either the approximate TDML loss
or a 1-step loss, as measured by true TDML, for three different model architectures from the model-
based RL literature. In our preliminary results, we find that models trained with the approximate
TDML loss are more accurate than their 1-step counterparts over long time horizons.

2 PRELIMINARIES

We consider a setting where a deterministic agent π acts in a deterministic environment f , with
actions at = π(st) and state transitions st+1 = f(st, at). Here, states and actions belong to the sets
S,A respectively. Although we use determinism to simplify notation, the mathematical framework
we will develop is general and extends straightforwardly to stochastic agents and environments.

We aim to learn a model of the transition function, fθ : S ×A→ S, parameterized by θ, which is a
good approximator for f . For convenience, we additionally define the notation f̄θ(s) = fθ(s, π(s))
and f̄(s) = f(s, π(s)). Also let f̄θ

n
(s) or f̄n(s) denote n successive compositions of f̄θ or f̄

respectively, which correspond to n steps of rollout in the simulated and real environments.

3 MODEL TRAINING OBJECTIVES

3.1 LOSSES IN THE LITERATURE

The standard one-step objective for model learning, L1, is defined as:

L1 = E
(st,at,st+1)∼β

[l(fθ(st, at), st+1)] (1)

where β is a replay buffer, and l : S × S → R+is a per-timestep loss function. This objective with
l(x, y) = ‖x− y‖22 is used in Kurutach et al. (2018); Feinberg et al. (2018); Buckman et al. (2018);
Nagabandi et al. (2018) among others, and with l(x, y) = ‖x− y‖2 in Xu et al. (2018); Clavera
et al. (2018). A multi-step variant, called multi-step or n-step loss, was used to train models in Xu
et al. (2018) and as a validation metric in Nagabandi et al. (2018):

Ln = E
(st:t+n,at:t+n)∼β

[
n∑
i=0

l(ŝt+i, st+i)

]
, ŝt+i+1 ← fθ(ŝt+i, at+i), ŝt = st, (2)

where n is typically small (e.g. n = 2 in Xu et al. (2018)). Using these losses is common in
the literature, even for domains with long horizons (e.g. MuJoCo and Atari). However, we argue
that these losses, which we call few-step objectives, do not adequately incorporate important details
about how models behave when used to forward simulate through the task horizon. We identify two
issues in particular that we seek to address:

Distribution mismatch. The inputs shown to the model at training time differ significantly from
inputs shown to the model at inference time. At training time, the model is shown trajectories from
the real environment; at inference time, the model is shown its own previous predictions as state
inputs, and the agent generates actions conditioned on those predictions instead of real states. This
induces compounding errors similar to those observed by Bengio et al. (2015) in RNNs, where
model prediction errors drive the inference inputs further from the distribution where the model is
good. While the multi-step loss ostensibly mitigates this, it still relies on action sequences that were
generated by an agent that only sees real states; we refer to this as an “open-loop” loss. Contrast
this with a closed-loop variant, where the simulated state sequences are generated by ŝt+i+1 ←
fθ(ŝt+i, π(ŝt+1)). We illustrate the distinction in Figure 1.

Component weighting. Standard loss functions like mean-squared-error weight all elements in the
loss vector evenly, despite the fact that not all elements will be equally important for accurately
forward simulating with the model. This makes the outcome from training with few-step model
losses highly dependent on the state representation: if it is easier to learn how to predict irrelevant
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ŝ t+1

π

π

fθ

f st+2
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Figure 1: Computation graphs for open-loop n-step loss (left) and closed-loop n-step loss (right)

elements than important ones, the model may perform particularly poorly at inference time. We note
that standard tricks like normalizing observations or state deltas, while helpful, do not fully solve
the problem.

3.2 TOTAL DISCOUNTED MODEL LOSS

To avoid the distribution mismatch and component weighting issues, we would like a loss function
that 1) accounts for closed-loop model behavior, and 2) extends as far as possible into the future.
To meet these criteria, we propose an objective function based on a per-timestep loss function that
directly extends the multistep closed-loop loss into the infinite horizon via a discount factor γ ∈
(0, 1). We call this per-timestep loss the total discounted model loss:

Df,fθ (st, ŝt) =

∞∑
n=0

γnl(f̄n(st), f̄θ
n
(ŝt)). (3)

This loss addresses both distribution alignment and component weighting. Since the loss is both
closed-loop and spans the entire task length, there is no distribution mismatch between training
and inference; additionally, while there is no guarantee that l leads to the best overall result for
whatever problem is being addressed, TDML rectifies the issue of component weighting by taking
into account far-future states. As long as l is a sensible distance measure, the model is encouraged
to have the appropriate behavior.

4 EFFICIENTLY APPROXIMATING THE TDML

Directly evaluating TDML as expressed in Equation 3 is not feasible because the calculation scales
with the horizon, which is infinite. However, we can devise a computable approximation for TDML
that does not require truncating at an arbitrary fixed horizon, through the use of temporal difference
methods. Observe that we can write a Bellman equation for the TDML, as:

Df,fθ (st, ŝt) = l(st, ŝt) + γDf,fθ (f̄(st), f̄θ(ŝt)). (4)

With the TDML expressed in this form, all of the techniques for deep temporal difference learning
(like in DDPG Lillicrap et al. (2015)) can be brought to bear in learning an approximator for it. We
denote the approximator, parameterized by ψ, as Dψ . The basic template for learning the TDML
approximator is then:

arg min
ψ

E
s,ŝ∼ρ

[
(Dψ(s, ŝ)− y)

2
]

(5)

where
y = l(s, ŝ) + γDψ(f̄(s), f̄θ(ŝ)). (6)

However, it is not immediately obvious what distribution ρ should be used to train Dψ . In order for
the backup term y to have accurate values, ρ needs to cover f̄(s), f̄θ(ŝ) for likely s, ŝ. That is, ρ
has to include state-fictitious state pairs for entire “parallel” trajectories. As a result, we generate a
distribution over (s, ŝ) pairs with the following procedure:

• Pick a state si in the replay buffer.
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Algorithm 1 Model training with Approximate TDML

Given model loss function l(·, ·), max rollout length κ, TDML discount γ, model target averaging
coefficient τf , TDML target averaging coefficient τM , model update delay d
Given deterministic policy π, replay buffer β
Initialize TDML network Dψ , model fθ and target networks Dψ′ ← Dψ , fθ′ ← fθ
for t = 1 to T do

Sample n trajectories of states τ from β
Sample integers k ∼ [1, κ], i ∼ [0, H − k)

y ← l(si+k, f̄
k
θ′(si)) + γDψ′(si+k+1, f̄

k+1
θ′ (si))

Update critic with gradient descent using: ∇ψ 1
n

∑(
Dψ(si+k, f̄θ

k
(si))− y

)2
if t mod d then

Update model with gradient descent using: ∇θ 1
n

(∑
l(st+1, f̄θ(st)) + γDψ(st+2, f̄θ

2
(st))

)
Update target networks: θ′ ← τfθ + (1− τf )θ′, ψ′ ← τMψ + (1− τM )ψ′

end if
end for

• Select a random integer k ∼ {1, ..., κ} for how far forward to go in the trajectory from si.

• Use (si+k, f̄θ
k
(si)) as a (s, ŝ) pair.

This gives us the following optimization problem for training the TDML approximator Dψ:

arg min
ψ

E
k∼{1,...,κ}

si,si+k,si+k+1∼β

[(
Dψ(si+k, f̄θ

k
(si))− y

)2]
(7)

where
y = l(si+k, f̄θ

k
(si)) + γDψ(si+k+1, f̄θ

k+1
(si)) (8)

5 MODEL LEARNING WITH APPROXIMATE TDML OBJECTIVE

If we had access to the true TDML function, we could train models with the objective:

LTDML = E
st,st+1∼β

[
Df,fθ (st+1, f̄θ(st))

]
= E
st,st+1,st+2∼β

[
l(st+1, f̄θ(st)) + γDf,fθ (st+2, f̄θ

2
(st))

]
.

Using our approximator instead, we arrive at the objective:

LTDML ≈ E
st,st+1,st+2∼β

[
l(st+1, f̄θ(st)) + γDψ(st+2, f̄θ

2
(st))

]
. (9)

Although we have now given an objective for model-learning in terms of our TDML approximator,
the picture for training the model is not complete. The TDML approximator is only valid for a fixed
model, so after the model is updated, it will also need to be updated.

We take the approach of TD3 (Fujimoto et al., 2018), alternating between minimizing the “critic”
Dψ error and minimizing the “actor” fθ error, incorporating a delay d which specifies the number of
TDML approximator optimization steps per model optimization step. We also use target networks,
as in TD3 (Fujimoto et al., 2018) and DDPG (Lillicrap et al., 2015), to stabilize the optimization
procedure. See Algorithm 1 for the full procedure.

6 DOES TDML WORK IN PRACTICE?

Since we aim to isolate the model-training problem core to MBRL, we strip away confounding
factors and focus on just the training procedure. We create a fixed replay buffer of interaction
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Figure 2: Comparison between one-step l2 loss training (One-Step Model) and Approximate TDML
training (TDML Model). Each column uses a model architecture from the literature, and each row
corresponds to a different TDML discount factor. Plots are smoothed over a 1000 SGD step window.
The shaded region represents the minimum and maximum values within that window.

data using a trained TD3 agent (Fujimoto et al., 2018) on the Walker2d-v2 domain in OpenAI
Gym (Brockman et al., 2016) to collect a buffer of 1000 trajectories, for a total of 106 transitions.
Although the agent is deterministic, the trajectories vary due to random starting states.

We train various model architectures from the literature, specifically those used in ME-TRPO (Ku-
rutach et al., 2018), MPO (Clavera et al., 2018), and SLBO (Xu et al., 2018), using both the one-step
l2 loss and the TDML learning procedure (with the l2 loss as the one-step loss function l). In cases
where ensembling was used in the original work, we train a single model. We do not use observa-
tion normalization or delta state prediction (in initial experiments, these tricks had some effect on
performance, but their use confounds the relationship we are interested in exploring).

In order to measure the quality of long-horizon predictions, we compute the true total discounted
model loss, LTDML, for both the one-step-trained and approximate TDML-trained models. We eval-
uate LTDML by sampling a batch of 16 states st ∼ β, querying the real transition function f and
learned model fθ in parallel for 1000 steps (the full horizon in Walker2d-v2) starting from st,
and then calculating the average TDML for the batch of trajectories according to Equation 3. We
experiment with two different TDML discount factors (γ) of 0.9 and 0.95, and find that our results
hold over discount factors. Finally, since the TDMLs of one-step models explode over long horizons
(see Appendix B), we clip the models’ one-step predictions between large values not encountered in
the real environment (−106 and 106).

Our results are summarized in Figure 2 and in Appendix A. Hyperparameters are listed in Appendix
C. Notably, training with approximate TDML not only decreases the true TDML significantly faster,
but in long-horizon simulations, the models also do not reach areas in state space with unrealistic
values or NaNs. This indicates that optimizing for the TDML metric improves the overall stability
of the model.

We note that these architectures were tuned by the authors to perform well using one-step error, and
that other architectures tuned for TDML could potentially perform even better.

7 CONCLUSION

In this work, we discussed challenges in learning environment models that are accurate over long
horizons, and we proposed to use a new objective function, the total discounted model loss (TDML),
to address these challenges. We also proposed an efficient method for approximating the TDML by
exploiting a temporal difference equation, and a method for training a dynamics model using the
TDML approximator as the objective function. Our experiments show that training with approx-
imate TDML produces models with more accurate long-horizon predictions than training with a
mean-squared error objective. In future work, we plan to explore the use of TDML training as a
subroutine in model-based RL algorithms for control.
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APPENDIX A: TRAINING CURVES

Below we give figures that detail model training for various model architectures and settings for γ.
In each sub-plot, the title corresponds to the metric being tracked (so, the plot marked “TDML” is
what we measure for performance). For TDML Models, “Loss” refers to the approximate TDML.

Loss TDML One-Step Error (l2)

Figure 3: ME-TRPO training comparison with γ = 0.9

Loss TDML One-Step Error (l2)

Figure 4: ME-TRPO training comparison with γ = 0.95

Loss TDML One-Step Error (l2)

Figure 5: MPO training comparison with γ = 0.9
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Loss TDML One-Step Error (l2)

Figure 6: MPO training comparison with γ = 0.95

Loss TDML One-Step Error (l2)

Figure 7: SLBO training comparison with γ = 0.9

Loss TDML One-Step Error (l2)

Figure 8: SLBO training comparison with γ = 0.95
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APPENDIX B: MODEL VARIANTS

To demonstrate the need for clipping model predictions when using one-step loss, we also ran a slate
of experiments where the model predictions were not clipped. We found that the TDML of one-step
models tended to explode catastrophically when not clipped:

Figure 9: Results for models trained without state prediction clipping.

To further investigate rollout explosion, we also ran a separate slate of experiments using tanh
activations instead of relu nonlinearities, since tanh saturates at extreme values and therefore is less
prone to explosion.

Figure 10: Results for models trained using tanh nonlinearities.

We found that the models trained using approximate TDML still beat out one-step models. How-
ever, the TDML of one model trained with approximate TDML diverged, which could be related to
divergence issues explored with other temporal-difference algorithms (Achiam et al., 2019). In later
work, we plan to investigate how work related to improving stability of TD-methods can improve
training with approximate TDML.
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APPENDIX C: HYPERPARAMETERS

All models used the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10−3.

Architecture Layers Activation Batch size L2 λ Weight norm?

ME-TRPO
(Kurutach et al., 2018) [1024, 1024] ReLU 1000 0 No

MPO
(Clavera et al., 2018) [512, 512, 512] ReLU 500 0 Yes

SLBO
(Xu et al., 2018) [500, 500] ReLU 256 10−5 No

Table 1: Model architectures tested

The TDML network was also trained with the Adam optimizer with a learning rate of 2 · 10−4 (see
Algorithm 1).

Layers Activation Batch size Update delay d κ τf τM

[1024, 1024] SeLU (Klambauer et al., 2017) 2048 10 5 0.005 1

Table 2: Hyperparameters for TDML network, M
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