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ABSTRACT

Discovering efficient exploration strategies is a central challenge in reinforcement
learning (RL), especially in the context of sparse rewards environments. We pos-
tulate that to discover such strategies, an RL agent should be able to identify sur-
prising, and potentially useful, states where the agent encounters meaningful in-
formation that deviates from its prior beliefs of the environment. Intuitively, this
approach could be understood as leveraging a measure of an agent’s surprise to
guide exploration. To this end, we provide a straightforward mechanism by train-
ing a variational auto-encoder to extract the latent structure of the task. Impor-
tantly, variational auto-encoders maintain a posterior distribution over this latent
structure. By measuring the difference between this distribution and the agent’s
prior beliefs, we are able to identify states which can hold meaningful information.
Leveraging this as a measure of intrinsic motivation, we empirically demonstrate
that an agent can solve a series of challenging sparse reward, highly stochastic
and partially observable maze tasks. We also perform experiments on continuous
control tasks with dense rewards and show improved performance in most cases.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have achieved several recent accomplishments, especially
by using non-linear function approximators to solve high dimensional complex tasks. However,
most RL algorithms rely on well designed reward functions to guide the behaviour of the agent.
Hand-crafting such reward functions is complex and can sometimes lead to unexpected behaviour.
In order to be deployed in real-world settings, RL agents will have to be able to learn from sparse
rewards environments. A key step towards scaling RL algorithms for unknown reward functions is
for the agent to naturally adapt its behaviour by learning a good exploration strategy.

Exploiting task structure is way to learn efficient exploration strategies in RL. Recent approaches
include the discovery of bottleneck states (Goyal et al., 2019) or learning a feature space (François-
Lavet et al., 2018). Exploration can also be formulated as an agent’s internal drive towards learning
more about the environment. This is often defined as intrinsic motivation, or curiosity of the agent
(Schmidhuber, 1991a; Oudeyer et al., 2016). Intrinsic motivation is also an important concept in
developmental psychology, where it is defined as the desire to pursue an activity for its inherent
satisfaction rather than for some external pressure or reward (Oudeyer & Kaplan, 2009). Curiosity
or intrinsic motivation can therefore be thought of as a task agnostic exploration heuristic towards
the goal of learning in an online fashion based on the agent’s interactions with the environment.

In this work, we propose a formulation of intrinsic motivation based on the definition of Bayesian
surprise as expressed in Itti & Baldi (2009). The intuition behind this approach is that experiences
which deviate from the agent’s prior beliefs about the world are surprising, and potentially useful
for learning. In other words, the agent should be able to identify the states which create important
changes to its prior knowledge by measuring the difference between posterior and prior distribution
after visiting such states. We propose a framework to identify surprising or useful states in the
environment via latent representation learning, which we use as intrinsic motivation for solving
sparse rewards and partially observable maze tasks as well as continuous control with dense rewards.
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Our Contributions: We use a Variational Auto-Encoder (VAE) to project the state space into a
probabilistic latent representation that would represent the inherent structure of the environment.
By using a VAE we naturally obtain a measure of the agent’s surprise defined by how much the
posterior distribution over the latent representation deviates from its prior belief. This is measured
in the form of a KL divergence KL(p(Z|S)||p(Z)) where p(Z) is the agent’s prior distribution over
the latent structure of the environment and p(Z|S) the posterior. We incentivize the agent to visit
surprising (and potentially useful) regions of the state space by providing this KL divergence as
intrinsic motivation.

2 PRELIMINARIES AND BACKGROUND

In this work we consider the standard reinforcement learning setting which considers the envi-
ronment as a Markov Decision Process M, which is defined as a tuple =̇(S,A, γ, r, P ). Here
S is the state set, A the action set, γ ∈ [0, 1) the discount factor, r : S × A → Dist(R) the
reward function and P : S × A → Dist(S) the transition probability distribution. A policy
π : S → Dist(A) specifies a way of behaving, and its value function is the expected return ob-
tained by following π: Vπ(s)=̇Eπ [

∑
t=0 γ

tr(St, At)|S0 = s]. Vπ satisfies the following Bellman
equations: Vπ(s) =

∑
a π (a|s) (r(s, a) + γ

∑
s′ P (s′|s, a)Vπ(s′)).

Curiosity as a form of intrinsic motivation has been argued to be a fundamental component for ef-
ficient learning (Friston et al., 2006). One of the ways to implement curiosity is by maintaining
a forward dynamics model of the environment and using its prediction error (Pathak et al., 2017;
Schmidhuber, 1991b) or prediction uncertainty (Houthooft et al., 2016) as intrinsic reward. These
approaches encourage the agent to visit regions of the state space where the dynamics of the envi-
ronment are less well understood, therefore guiding exploration. However, their performance tends
to suffer in stochastic environments as it becomes harder to predict the consequences of the agent’s
actions. Another direction (Ostrovski et al., 2017; Bellemare et al., 2016) formulated an exploration
bonus as a measure of novelty in terms of unseen states. Such approaches have shown great potential
but contain some strict requirements on the density model of the states, such as it should be learning-
positive. Other ways to improve exploration include the optimal rewards framework (Singh et al.,
2010) where the authors propose that the optimal intrinsic reward is the one that would maximize
the extrinsic reward. However, defining such optimal reward function is an open question. Our ap-
proach on the other hand aligns with the Bayesian perspective on surprise (Itti & Baldi, 2009) which
has been shown to be applicable across different spatio-temporal scales and levels of abstractions.

3 LEVERAGING STATE ENCODING FOR INTRINSIC MOTIVATION

3.1 INTRINSIC MOTIVATION

In this work, we assume that the experiences S of an agent are generated by a random latent process
defined through the variable Z. This latent process can encode some structure or pattern present in
the observed data. The goal of the agent would be to extract and learn this structure in order to have
a better understanding of the world it is interacting with. However, to faithfully represent the latent
factors of variation, an agent has to successfully explore the environment. Therefore, the objective
of extracting structure from the environment is deeply interlaced with the objective of exploration.
One way to attend to this challenge is by adding an intrinsic reward that would depend on the quality
of the model of the environment. On one hand, this intrinsic motivation would encourage the agent
to gather unseen data which would improve the model, while on the other hand guiding the agent to
fully explore its environment.

We propose a measure of intrinsic motivation formulated as the distance between the posterior dis-
tribution over the latent variable p(Z|S) after seeing new data S and the prior p(Z). A natural way
to measure this distance is through the KL divergence. Therefore, we can define the intrinsic reward
at a state S as

rintrinsic(S) = KL
(
(p(Z|S)||p(Z)

)
Our measure of intrinsic reward is closely related to the definition of Bayesian surprise proposed by
(Itti & Baldi, 2009). In this work, the authors argue that the only rigorous definition of surprise is by
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measuring how data affects the beliefs of an observer about the world. This measure of surprise is
computed as the difference between the prior distribution p(M) of the observer, whereM represents
the possible models of its environment, and posterior distribution p(M |D) after observing data D.
Our definition of intrinsic motivation can then be seen as an approximation to Bayesian surprise,
with the slight conceptual difference that the variable Z represents a latent encoding of the structure
of the environment. This difference will have a key impact in our work as it directly guides our
implementation.

3.2 APPROACH

It is usually impractical to infer exactly the posterior distribution p(Z|S) as it involves intractable in-
tegrals. We will therefore choose to approximate this posterior by a variational distribution qφ(Z|S).
A natural candidate to represent this distribution is through a Variational Auto-Encoder (VAE). VAEs
take the inputs S and project them into latent space Z, which is usually of smaller dimensionality.
This latent space is meant to capture factors of variation (patterns) within the data. Importantly, a
VAE minimizes the following loss:

L(θ, φ) = Eqφ(Z|S)
[
log pθ(S|Z)

]
−KL

(
qφ(Z|S)||p(Z)

)
where the first term is the reconstruction loss while the second term encourages the approximate
posterior qφ(Z|S) to stay close to the prior p(Z). In practice, the prior is chosen as a unit Gaussian
to simplify the implementation. This also our choice for the prior.

Algorithm 1: Training loop with intrinsic motivation for A2C.
for Episode=0,1,2,.... do

Initialize dataset D and insert s0 in D.
for t=0,1,2...T do

Take action at and observe next state st+1 and extrinsic reward rextrinsic(st+1)
Compute intrinsic reward: rintrinsic(st+1) = KL(qφ(z|st+1)||p(z))
Store tuple (st+1, at, rintrinsic(st+1), rextrinsic(st+1)) in D
if mod(t,N) then

Train the actor and critic on return Gt =
∑
t rextrinsic(st) + βKL(qφ(z|st)||p(z))

Train the VAE on the collected states s in D.
Initialize dataset D and insert st in D.

end
end

The overall loss function is a lower-bound to the likelihood of the data. This lower-bound is ap-
pealing as it explicitly evaluates the KL divergence between posterior and prior distributions. It is
therefore straightforward to leverage VAEs for intrinsic motivation. To do so, we need to separately
train a VAE on the stream of data an RL agent experiences. We can then define the useful states, or
states which contain a high degree of surprise, in places where the KL is high between the posterior
and the prior. This KL between the posterior and prior, whenever high, would encourage the agent
to visit that region of the state space when it is provided as intrinsic motivation. By doing so, the
agent would efficiently explore its environment and improve the quality of the VAE for encoding the
hidden structure in the data.

We define the intrinsic motivation reward as rintrinsic(st) = KL(qφ(z|st)||p(z)) such that at every
step, the agent gets a total reward of rtotal(st) = rextrinsic(st) + βrintrinsic(st). We can therefore
define policy gradient objectives based on the cumulative discounted total return, which includes
both the extrinsic and intrinsic task rewards. In our implementation, we use be using actor-critic to
solve the task at hand. However, our definition of intrinsic motivation could be readily used with
any other policy gradient algorithm, as well as value-based algorithms. We provide a description of
the overall process in Algorithm 1.
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4 EXPERIMENTAL RESULTS

4.1 MAZE ENVIRONMENTS

We first perform experiments on the multi-room maze tasks which are partially observable and
sparse reward tasks, as part of the MiniGrid environment (Chevalier-Boisvert & Willems, 2018).
In MiniGrid, the agent has to navigate a number of rooms, by opening doors or by using a key, in
order to get to the goal situated at the other end of the maze. Due to the sparsity in rewards, these
maze tasks are often hard to solve, hence requiring efficient exploration strategies. The goal of our
experiments is to show that our definition of intrinsic motivation can achieve efficient exploration.
To do so, we compare our implementation (VAE) against two baselines: a standard A2C agent and
an A2C agent using the prediction error of a model of the transition dynamics as intrinsic motivation
(ICM) (Pathak et al., 2017). In Figure 1 we show empirical results on three domains: Multi-Room-
N3S4, Multi-Room-N4S4 (where N represents the number of rooms and S the size of the rooms)
and Door-Key-8x8. We see that our approach, VAE, and the approach based on the prediction error,
ICM, both outperform significantly the A2C baseline. In the Multi-Room-N4S4 and the Door-Key-
8x8 environments, we notice that our approach outperforms ICM. Upon investigating the behaviour
of the agent, we noticed that the KL divergence was highest at key states such as hallways, in the
sight of the door and near the goal. Therefore, we believe one reason explaining the better empirical
performance is due to a possible correlation between surprising states and useful states in these
particular environments.

Figure 1: Task Rewards on partially observable and sparse reward tasks from the MiniGrid envi-
ronment. We see that our approach, VAE, significantly outperforms both the approach based on the
prediction error i.e. ICM, and the A2C baseline.

It is widely-known that intrinsic motivation based on the prediction error of a transition model is
sensitive to the inherent stochasticity of the environment (Burda et al., 2018). As such, we performed
a series of experiments on the same task but with different degrees of randomness and we show our
results in Figure 2. We notice that as the stochasticity in the environment is increased (from left
to right), the prediction error of ICM becomes an unreliable source of intrinsic rewards which in
turn degrades the performance of the agent on the task. This highlights an important difference
between ICM and our approach: the agent is not trying to predict the consequences of its actions, as
sometimes they can be very complex, but instead tries to encode the structure present in the stream
of observations. This provides a efficient intrinsic signal that can guide the agent even when the
environment becomes less predictable.

(a) (b) (c) (d)

Figure 2: Task Rewards for different degrees of environmental stochasticity: As the stochasticity
in the environment is increased from (a) to (d), the prediction error of ICM becomes an unreliable
source of intrinsic rewards which in turn degrades the performance of the agent on the task. On the
contrary, our approach VAE shows consistency and is robust to stochasticity in the environment.
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4.2 CONTINUOUS CONTROL

Next, we performed experiments on more complex continuous control tasks in the MuJoCo environ-
ment (Todorov et al., 2012). We present results in Figure 3. In these experiments we opted for the
DDPG algorithm (Lillicrap et al., 2016) as our baseline as it is a competitive algorithm in these set
of tasks. We compare the baseline agent (DDPG) to our approach (VAE) on three locomotion tasks:
HalfCheetah-v1, Hopper-v1 and Walker2d-v1.
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Figure 3: Task Rewards on Mujoco environment. We see that our approach is able to outperform
the DDPG baseline in two out of the three environments explored.

Our approach improves the performance on most of the tasks. Particularly, in HalfCheetah-v1 we
notice that our exploration strategy doubles the final score. In Hopper-v1 we also notice improve-
ments, however in Walker2d-v1 our approach performs worse than the baseline. A possible reason
explaining why we do not observe improvement in Walker2d-v1 as compared to the boost in perfor-
mance in the other two environments is due to the fact that in Walker2d-v1 the agent has to learn a
gait while avoiding to fall. This is something that is simply not present in HalfCheetah-v1 and more
easily avoidable in Hopper-v1.

5 DISCUSSION AND FUTURE WORK

In this work, we presented an interestingly simple approach towards learning with intrinsic moti-
vation inspired by the definition of Bayesian surprise. We emphasize that our approach is readily
extendable towards existing RL frameworks as it requires little overhead. In contrast to several ex-
isting works which use prediction error of a transition dynamics model as intrinsic motivation, our
approach does not suffer much from an increase in the environment’s stochasticity.

A possible improvement to the current framework would be to use a model of the environment that
better reflect its latent structure. As it has been noted in Ha & Schmidhuber (2018), variational
auto-encoders tend to encode details about the observations that are not always meaningful. To
overcome this issue, we could use auxiliary losses to refine the latent representation (François-Lavet
et al., 2018). Another possible direction would be to consider explicitly the temporal aspect in
reinforcement learning and use a generative model that would account for it (Gregor & Besse, 2018)
while still providing a posterior distribution useful for intrinsic motivation.

The key to our approach is to leverage an agent’s intrinsic motivation that is task agnostic and solely
dependant on the latent structure of the environment. As a consequence, irrespective of a dense
or sparse reward function, we can provide an exploration bonus defined by the agent’s measure
of Bayesian surprise, without requiring the agent to know the task-dependent goal information.
This is an interesting step towards transfer learning, where even if the task reward changes or the
transition dynamics change, the agent can use the learnt state encoding representation as intrinsic
motivation in new tasks. In future work, we aim to evaluate the usefulness of our proposed method
on transfer learning tasks where we would provide an exploration bonus in new tasks with the
previously learnt variational encoder. The variational state encoding could in fact also be leveraged
without an external task specific reward in the context of transfer learning.
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