
Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

LEARNING TO PLAN VIA NEURAL EXPLORATION-
EXPLOITATION TREES

Binghong Chen∗
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
binghong@gatech.edu

Bo Dai∗
Google Brain
Mountain View, CA 94043, USA
bodai@google.com

Le Song
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA
lsong@cc.gatech.edu

ABSTRACT

Sampling-based planning algorithms such as RRT and its variants are powerful
tools for path planning problems in high-dimensional continuous state and action
spaces. While these algorithms perform systematic exploration of the state space,
they do not fully exploit past planning experiences from similar environments. In
this paper, we design a meta path planning algorithm, called Neural Exploration-
Exploitation Trees (NEXT), which can utilize prior experience to drastically reduce
the sample requirement for solving new path planning problems. More specifically,
NEXT contains a novel neural architecture which can learn from experiences
the dependency between task structures and promising path search directions.
Then this learned prior is integrated with a UCB-type algorithm to achieve an
online balance between exploration and exploitation when solving a new problem.
Empirically, we show that NEXT can complete the planning tasks with very small
search trees and significantly outperforms previous state-of-the-arts on several
benchmark problems.

1 INTRODUCTION

Planning paths efficiently in a high-dimensional continuous state and action space is a fundamental
yet challenging problem in many real-world applications, such as robot manipulation and autonomous
driving. Since the general path planning problem is PSPACE-complete (Reif, 1979), one typically
resorts to approximate or heuristic algorithms.

Tree-based sampling planner, such as probabilistic roadmaps (PRM) (Kavraki et al., 1996), rapidly-
exploring random trees (RRT) (LaValle, 1998), and their variants (Karaman & Frazzoli, 2011),
provide principled approximate solutions to a wide spectrum of high-dimensional path planning tasks.
These algorithms can be summarized in the template Algorithm 1 with different Expand operators1.
However, these algorithms typically employ a uniform proposal distribution for sampling which does
not make use of the structures of the problem at hand and thus may require lots of samples to obtain
an initial feasible solution path for complicated tasks. To improve the sample efficiency, researchers
designed algorithms to take problem structures into account (Boor et al., 1999; Hsu et al., 2003;
Shkolnik et al., 2009; Gammell et al., 2014; 2015), to name a few. Despite that, all these improved
samplers are designed manually to address specific structural properties, which may or may not be
valid for a new task, and thus, may lead to even worse performance compared to the uniform proposal.

Can we exploit past path planning experiences, and learn an efficient and generalizable sampling
algorithm for future planning tasks? Pioneering works in this direction are limited in one way

∗indicates equal contribution.
1Please refer to Appendix A for more context about tree-based sampling algorithms.

1



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Algorithm 1: Tree-based Sampling Algorithm (TSA)
Data: Planning Task

U = initial state: sinit, goal state region: Sgoal, configuration state space: S,
free state space: Sfree,workspace map, cost function: c(·)

1 Initialize Tree T = (V, E) with V ← {sinit} and E ← ∅;
2 for t← 0 to T do
3 sparent, snew ← Expand(T , U) ;
4 if ObstacleFree(sparent, snew) then
5 V ← V ∪ {snew} and E ← E ∪ {(sparent, snew)};
6 T ← Postprocess(T , U) ; . Optional
7 if snew ∈ Sgoal then
8 return T ;

or the other. Zucker et al. (2008); Zhang et al. (2018) treat the sampler as a stochastic policy to
be learned and apply policy gradient methods to improve the policy. Finney et al. (2007); Ye &
Alterovitz (2017); Bowen & Alterovitz (2014); Ichter et al. (2018); Kim et al. (2018); Kuo et al.
(2018) apply imitation learning based on the collected demonstations to introduce bias for better
sampler via multiple probabilistic models. However, each of these approach either simply rely on
special hand-designed local features or assume the tasks are indexed by special parameters. As we
will show in the experiments, such representations limit the generalization ability of these algorithms.
Although deep learning based approach, such as value iteration networks (VIN) (Tamar et al., 2016)
and gated path planning networks (GPPN) (Lee et al., 2018), can learn task representations, they are
not directly applicable to continuous state and action spaces within high dimensional problems.

Another key issue in learning to plan which has been largely ignored is the online exploration-
exploitation trade-off. Arguably the stochasticity in the biased sampler will provide a certain degree
of exploration, and the inductive biases in the learned samplers will lead to exploitation. However,
existing algorithms do not explicitly balance the exploration and exploitation in a principled online
fashion in a new planning task.

In this work, we propose a substantially improved algorithm, Neural EXploration-EXploitation
Tree (NEXT), for learning in path planning, leveraging recent advances in representation learning
and infinite-armed bandit problem. Our algorithm contains a novel neural architecture which can
learn from experiences the dependency between task structures and promising search directions.
This learned neural prior is integrated with a UCB-type algorithm to achieve an online balance
between exploration and exploitation when solving a new problem. Empirically, we show that NEXT
can exploit past experience to reduce the sample requirement drastically for solving new planning
problems, and significantly outperforms previous state-of-the-arts on several benchmarks.

2 NEURAL EXPLORATION-EXPLOITATION TREES

We will leverage UCB algorithms to explicitly take exploration versus exploitation trade-off into
account, leading to a novel expansion operator in Algorithm 2, which will be improved through a meta-
imitation learning with novel neural architecture in Algorithm 3. Integrating this with the tree-based
sampling planner in Algorithm 1, we obtain the Neural Exploration-Exploitation Trees (NEXT).

2.1 GUIDED PROGRESSIVE EXPANSION

We first introduce the Guided Progressive Expansion (GPE) with the assumption that a value function
oracle V ∗(s|U), defined as the cost of the shortest path from state s to the goal, is provided for any
state s of a problem U . Since we do not have direct access to V ∗, we will estimate a surrogate Ṽ ∗
instead. We will postpone the learning of such value function from past experience to Section 2.2.
The purpose of the Expand operator is to expand the current search tree T with a new neighboring
state snew ∈ B(T ), where B(T ) =

⋃
s∈V B(s), B(s) = {s′ ∈ S | ‖s′ − s‖ 6 η} with η is the

radius of the neighborhood. We consider the expansion as a two-step procedure
(i) We select a state s from the existing tree T ;

(ii) We select a state snew in the neighborhood of the selected s, and add it to T .
Selection from T . Recall that in every step, we always have a finite number of nodes in the search
tree T (V, E). Therefore step (i) shares some similarity with the multi-armed bandit problem by

2



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Algorithm 2: NEXT :: Expand(T , U)

Data: T = (V, E), U = (sinit,Sgoal,S,Sfree, map, c(·))
1 sparent ← argmaxs∈Vt φ(s); . Selection
2 candidates← Sample k states from π(s′|sparent, U); . Guided candidates generation
3 snew ← argmaxs′∈candidates φ(s′); . Progressive expansion
4 return sparent, snew;

viewing the existing nodes {s} ∈ V as arms and the negative value function estimate−Ṽ ∗ (s|U) as the
rewards r (s). However, as the algorithm executed, the number of states is increasing. Consequently,
we cannot use the vanilla UCB algorithm. The problem can be solved by smoothing the reward r(s)
via Gaussian Process or kernel regression (Yee et al., 2016). Then, the upper confidence bounds
(UCB) of the reward function, φ (s) : V → R can be computed, and the selection of the next node
s ∈ V to expand will be carried out using φ(s), i.e., st+1 = argmaxs∈V φ(s). We denote the
sequence of selected nodes from the current tree as St = {s1, s2, . . . , st}. Note that some nodes
in the tree may be selected multiple times. We list two examples of constructing the UCB due to
different smoothing parametrizations:
• GP-UCB: GP-UCB maintains an UCB of the reward after t-step as

φ (s) := r̄t (s) + λσt (s) , (1)
where r̄t (s) = kt (s) (Kt + αI)

−1
rt, σ

2
t (s) = k (s, s) − kt (s)

>
(Kt + αI)

−1
kt (s) , with

kt (s) = [k (si, s)]si∈St and Kt = [k (s, s′)]s,s′∈St .

• KS-UCB: kernel smoothing UCB (Yee et al., 2016) maintains the reward after t-step as

φ (s) :=

∑
s′∈St k (s′, s) r (s′)∑

s′∈St k (s′, s)
+ λ

√
log
∑
s′∈St w (s′)

w (s)
, (2)

with w (s) =
∑
s′∈St k (s′, s).

Generating reachable state. We consider the reachable state generation as another bandit problem
but with infinite arms in B(s). We approach it with a policy π̃∗ (s′|s, U) to generate some candidates
and select the one that has the largest φ (s) value. The policy π̃∗ will provide some bias in sampling.
As we will explain in more details in Section 2.2, π̃∗ is trained to mimic the optimal policy π∗ from
the previous experiences across different tasks.

With these details on step i) and ii) explained above, we obtain our novel NEXT :: Expansion
in Algorithm 2, which is illustrated in Figure 5(b) and (c) in Appendix C. We next show how we
can obtain the value function estimator Ṽ ∗ (s|U) and learn the guiding policy π̃∗ (s′|s, U) in the
expansion operator, as illustrated in Figure 5(d) using experiences from previous planning tasks.

2.2 NEURAL ARCHITECTURE

In this section, we introduce the neural architecture and learning scheme for Ṽ ∗ (s|U) and π̃∗ (s′|s, U).
The design of the neural architecture is inspired by the VIN (Tamar et al., 2016) and GPPN (Lee
et al., 2018), but with significant differences. The major challenge is that we only have access to low
dimensional workspace map (as per our assumption), but we need to predict the value and construct
policy for high dimensional states in configuration space. To address this challenge, we will design a
novel attention-based configuration space embedding modules, which allows us to perform value
iteration in the embedded space.

Configuration space embedding. Since the configuration space is high dimensional and continu-
ous, VIN and GPPN cannot be directly applied. We will design a novel attention-based network to
embed the configuration space into a 3d tensor, on which a planning module with recursive structure
similar to value iteration networks can be applied.

More specifically, we will use sw to explicitly denote the workspace part of state s ∈ S, and sh to
denote the remaining dimensions of the state, i.e. s = (sw, sh). sw and sh will be embedded using
different neural architectures. For simplicity of notation, we will focus on the 2d workspace case
here, where sw ⊂ R2. However, we emphasize that our method applies to the 3d workspace as well.
• For sw, the embedding µθw(sw) is a d×d matrix of the same size as map, and it is computed using
kw convolution layers, i.e.,

µθw(sw) = softmax2d(fwkw(sw)), fwi+1(sw) = relu(θwi ⊕ fwi (sw)), (3)

3



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

where ⊕ is the convolution operation, each θwi is a convolution kernel of size 1 × 1, fwi (sw) ∈
Rd×d×kwi for i > 0, kwi s are hyper-parameters, θw0 is a convolution kernel of size 1 × 1 × 4, and
fw0 (sw) is a tensor of size d× d× 4 filled with

fw0 (sw)ijl =


swl , if l ∈ {1, 2},
i, if l = 3,

j, otherwise.
(4)

• For sh, the higher dimensional configuration embedding µθh(sh) is computed using kh fully-
connected layers, i.e.

µθh(sh) = softmax(fhkh(sh)), fhi+1(sh) = relu(θhwi fhi (sh) + θhbi ), (5)
where µθh(sh) ∈ Rda and fh0 (sh) = sh.

We can obtain µθ(s) by multiplying µwθ (sw) with µhθ (sh),
µθ(s)ijl = µwθ (sw)ij · µhθ (sh)l. (6)

The overall architecture of the attention-based embedding module is illustrated in Figure 6 in
Appendix C. The result of the embedding of a state s is a d× d× da tensor attention map

µθ(s) with µθ(s)ijl > 0, and
∑
ijl

µθ(s)ijl = 1,

where θ denotes the parameters in the embedding network.
Overall model architecture. With the attention-based embedding of the configuration spaces, we
can apply planning module on top of it. First, we will produce the embedding µθ(sinit) and µθ(sgoal)
of the initial state sinit and the goal state sgoal respectively. Then we parameterize Ṽ ∗ (s|U) and
π̃∗ (s′|s, U) in the following way.

The input to the planning module is computed by a CNN, Ṽ ∗(0), R̃ = σ (W0 ⊕ [µθ(sgoal), map]) ,
where [µθ(sgoal), map] denotes the concatenation of µθ(sgoal) and map along the 3rd dimension,
and W0 is a 3d convolution kernel of size k × k × (da + 1). After T iterations of Bellman update
Ṽ ∗(t) = min

(
W1 ⊕

[
Ṽ ∗(t−1), R̃

])
, we have Ṽ ∗(T ). Notice that since the Bellman update is

performed in the embedding space, Ṽ ∗t is a tensor of size d× d× de, and W1 is a 3d convolution
kernel of size k × k × (de + 1), where de is a multiple of da, de = da · p.

Then we extract ψ(sinit) ∈ Rp by multiplying Ṽ ∗(T ) (of size d×d×da×p) with attention µθ(sinit),
ψ(sinit)e =

∑
ijl

Ṽ
∗(T )
ijle · µθ(sinit)ijl, (7)

and finally we obtain Ṽ ∗ (sinit|U) , π̃∗ (s′|sinit, U) = hW2
(ψ(sinit)).

For the details of the parameterization in our implementation, please refer to the Appendix B.
We illustrate the overall model architecture in Figure 7 in Appendix C. The parameters W =
(W0,W1,W2, θ) will be learned together.

2.3 META SELF-IMPROVING LEARNING

The learning of the parameters in Ṽ ∗ (s|U) and π̃∗ (s′|s, U) are carried out simultaneously with
planning. We do not have an explicit training and testing phase separation. Particularly, we use a
mixture of RRT :: Expand and NEXT :: Expand with probability ε and 1− ε, respectively, inside the
tree-based planning algorithm in Algorithm 1. The RRT∗ postprocessing step will be used in the
template. The ε is set to be 1 at the initial stage since the {Ṽ ∗, π̃∗} is not well-trained, and thus,
the algorithm behaves like RRT∗. As the training proceeds, we anneal ε gradually as the sampler
becomes more and more efficient.

The dataset Dn = {Tj , Uj}nj=1 for the n-th training epoch is collected from the previous planning
experiences. For a tree T ∈ Dn, let m denote the length of the solution path, we can reconstruct the
successful path

{
si
}m
i=1

, and the value for each state in the path will be the sum of cost to the end of

the path, i.e.,
{
yi :=

∑m−1
l=i c

([
sl, sl+1

])}m
i=1

. We learn {Ṽ ∗, π̃∗} by optimizing,

min
W

∑
T ∼Dn

`
(
Ṽ ∗, π̃∗; T

)
:= −

m−1∑
i=1

log π̃∗
(
si+1|si

)
+

m∑
i=1

(Ṽ ∗
(
si
)
− yi)22 + λ ‖W‖2 . (8)

We will apply the stochastic gradient descent to minimize (8) w.r.t. W .

4



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Algorithm 3: MSIL: Meta Self-Improving NEXT Learning
1 Initialize dataset D;
2 for epoch i← 1 to N do
3 Sample a planning instance U from some distribution;
4 T ← TSA(U) with ε ∼ Unif [0, 1], and ε · RRT :: Expand + (1− ε) · NEXT :: Expand;

Postprocessing with RRT∗ :: Postprocess;
5 Dn ←Dn ∪ {T , U};
6 for j ← 0 to L do
7 Sample {T , U} from Dn;
8 Reconstruct optimal path {si}mi=1 and the cost of paths based on T ;
9 Update the W ←W − η∇W `(Ṽ ∗, π̃∗; T );

10 Anneal ε = αε, α ∈ (0, 1);
11 return W

On the one hand, the objective (8) is making the policy imitate the successful policy and improving
the value function estimation based upon the outcomes from the NEXT algorithm itself on previous
tasks. On the other hand, the updated {Ṽ ∗, π̃∗} will be applied in the next epoch to improve the
performance of planning. Therefore, we named the learning algorithm as Meta Self-Improving
Learning (MSIL). The learning procedure is summarized in Algorithm 3 and illustrated in Figure 5.

0 1 2 3 4 5 6
Traning phase

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

0 1 2 3 4 5 6
Traning phase

1

2

3

4

5

6

7

8

Av
er

ag
e 

co
llis

io
n 

ch
ec

ks

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

0 1 2 3 4 5 6
Traning phase

1

2

3

4

5

6

7

Av
er

ag
e 

pa
th

 c
os

t

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

2D 3D 5D
Experiments

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

GPPN
NEXT-KS
NEXT-GP
RRT*
BIT*
Reject
CVAE
BFS

2D 3D 5D
Experiments

0

2

4

6

8

Av
er

ag
e 

co
llis

io
n 

ch
ec

ks

NEXT-KS
NEXT-GP
RRT*
BIT*
Reject
CVAE
BFS

2D 3D 5D
Experiments

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e 

pa
th

 c
os

t

GPPN
NEXT-KS
NEXT-GP
RRT*
BIT*
Reject
CVAE
BFS

Figure 1: Top row: improvement curves evaluated at different training stages of the 5D experiment;
Bottom row: comparison between the NEXT and existing algorithms. The performance of all
algorithms is evaluated with the last 1000 tasks for each experiment. All algorithms are restricted to
use only 500 samples, except RRT∗-10k and BIT∗-10k, which are allowed to use 10,000 samples.

3 EXPERIMENTS

We compared NEXT with RRT∗ (Karaman & Frazzoli, 2011), BIT∗ (Gammell et al., 2015), CVAE-
plan (Ichter et al., 2018) and Reject-plan (Zhang et al., 2018) in terms of planning time and solution
optimality. We compared these algorithms on three types of planning tasks: workspace planning,
rigid body navigation, and 3-link snake2, whose configuration spaces are R2, R3 and R5, respectively.
For each experiment, we generated 3000 different tasks from the same distribution. We trained the
learning-based baselines CVAE-plan and Reject-plan using the first 2000 tasks, reserved the rest for
testing. We let NEXT improve itself using MSIL over the first 2000 tasks. In this period, for every
200 tasks, we updated its parameters and annealed ε once.

2Please refer to Figure 9 in Appendix D.2 for an example of all three types of tasks.

5



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

To systematically evaluate the algorithms, we recorded the time (measured by the number of collision
checks used) needed to find a collision-free path, the success rate within time limits, and the cost of the
solution path for each run. The results of the reserved 1000 test tasks of each experiment are shown
in the bottom row of Figure 1. Both the KS-UCB and the GP-UCB version of NEXT outperform its
competitors by a large margin under all three criteria. We plot the performance improvement curve of
our algorithms on the 5D planning tasks in the top row of Figure 1. For comparison, we also plot
the performance of RRT∗ and BIT∗. At the beginning phase of self-improving, our algorithms are
comparable to RRT∗. They then gradually learn from previous experiences and improve themselves
as they see more tasks and better solutions. In the end, NEXT-KS is able to match the performance of
RRT∗-10k using only one-twentieth of its samples! For more experiments details and results, please
refer to Appendix D.

ACKNOWLEDGEMENTS

LS is supported in part by NSF IIS-1218749, NIH BIGDATA 1R01GM108341, NSF CAREER
IIS-1350983, NSF IIS1639792 EAGER, NSF IIS-1841351 EAGER, NSF CCF-1836822, NSF CNS-
1704701, ONR N00014-15-1-2340, Intel ISTC, NVIDIA, Amazon AWS, Siemens and Google
Cloud.

REFERENCES

Valérie Boor, Mark H Overmars, and A Frank Van Der Stappen. The gaussian sampling strategy
for probabilistic roadmap planners. In Robotics and automation, 1999. proceedings. 1999 ieee
international conference on, volume 2, pp. 1018–1023. IEEE, 1999.

Chris Bowen and Ron Alterovitz. Closed-loop global motion planning for reactive execution of
learned tasks. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1754–1760. IEEE, 2014.

Sarah Finney, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Predicting partial paths from planning
problem parameters. In Robotics Science and Systems, 2007.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic.
arXiv preprint arXiv:1404.2334, 2014.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Batch informed trees (bit*):
Sampling-based optimal planning via the heuristically guided search of implicit random geometric
graphs. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 3067–
3074. IEEE, 2015.

David Hsu, J-C Latombe, and Rajeev Motwani. Path planning in expansive configuration spaces. In
Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, volume 3,
pp. 2719–2726. IEEE, 1997.

David Hsu, Tingting Jiang, John Reif, and Zheng Sun. The bridge test for sampling narrow passages
with probabilistic roadmap planners. In Robotics and Automation, 2003. Proceedings. ICRA’03.
IEEE International Conference on, volume 3, pp. 4420–4426. IEEE, 2003.

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot motion
planning. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.
7087–7094. IEEE, 2018.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846–894, 2011.

Lydia E Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4), 1996.

6



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Guiding search in continuous state-
action spaces by learning an action sampler from off-target search experience. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Yen-Ling Kuo, Andrei Barbu, and Boris Katz. Deep sequential models for sampling-based planning.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6490–
6497. IEEE, 2018.

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated
path planning networks. arXiv preprint arXiv:1806.06408, 2018.

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and Jason
Yosinski. An intriguing failing of convolutional neural networks and the coordconv solution. In
Advances in Neural Information Processing Systems, pp. 9628–9639, 2018.

Jeff M Phillips, Nazareth Bedrossian, and Lydia E Kavraki. Guided expansive spaces trees: A
search strategy for motion-and cost-constrained state spaces. In IEEE International Conference on
Robotics and Automation, pp. 3968–3973, 2004.

John H Reif. Complexity of the mover’s problem and generalizations. In Foundations of Computer
Science, 1979., 20th Annual Symposium on, pp. 421–427. IEEE, 1979.

Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-guided sampling for planning
under differential constraints. In Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pp. 2859–2865. IEEE, 2009.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In
Advances in Neural Information Processing Systems, pp. 2154–2162, 2016.

Gu Ye and Ron Alterovitz. guided motion planning. In Robotics research, pp. 291–307. Springer,
2017.

Timothy Yee, Viliam Lisy, and Michael Bowling. Monte carlo tree search in continuous action spaces
with execution uncertainty. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, pp. 690–696. AAAI Press, 2016.

Clark Zhang, Jinwook Huh, and Daniel D Lee. Learning implicit sampling distributions for motion
planning. arXiv preprint arXiv:1806.01968, 2018.

Matt Zucker, James Kuffner, and J Andrew Bagnell. Adaptive workspace biasing for sampling-based
planners. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp.
3757–3762. IEEE, 2008.

7



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Appendix

A TREE-BASED SAMPLING ALGORITHMS

Here we present a unifying view of many sampling-based planning algorithms including the
RRT (LaValle, 1998), the RRT∗ (Karaman & Frazzoli, 2011), and the EST (Hsu et al., 1997;
Phillips et al., 2004). These algorithms maintain a search tree T rooted at the initial point sinit and
connecting all sampled points V in the configuration space with edge set E . Then a path ξ from
the initial position to any sampled point can be constructed via the shortest path in the search tree.
Furthermore, this tree will be expanded incrementally by incorporating more sampled points until
some tree leaf reaches the goal region Sgoal. At this point, a feasible solution for the path planning
problem is found, corresponding to the shortest path between the root and this particular leaf. After
that, more sampling can be conducted, and the tree can be further expanded to refine the path.

Goal

Start
Parent

New

Goal

Start
Parent

New

Figure 2: Illustration for one iteration of Algorithm 1. The left and right figures illustrate two different
cases where the sample returned by the Expand operator is unreachable and reachable from the
search tree.

The template of tree-based sampling algorithms is summarized in Algorithm 1 and illustrated in
Figure 2. A key component of the algorithm is the tree Expand operator, which can be instantiated
differently in different concrete algorithms (more discussion later). The Expand operator returns
an existing node in the tree sparent ∈ V and a new state snew ∈ S sampled from the neighborhood
of sparent. Then the line segment [sparent, snew] is passed to function ObstacleFree for collision
checking. If the line segment [sparent, snew] is collision-free (no obstacle in the middle, or called
reachable from T ), then snew is added to the tree vertex set V , and the line segment is added to the
tree edge set E . If the newly added node snew has reached the target Sgoal, the algorithm will return.
Optionally, some concrete algorithms can define a Postprocess operator to refine the search tree.
For an example of the Expand operator, as shown in Figure 5 (c), since there is no obstacle on the
dotted edge [sparent, snew], i.e., snew is reachable, the new state and edge will be added to the search
tree (connected by the solid edges).

Now we will provide two concrete algorithm examples. For instance,

• If we instantiate the Expand operator as Algorithm 4, then we obtain the rapidly-exploring
random trees (RRT) algorithm (LaValle, 1998), which first samples a state s from the
configuration space S and then pulls it toward the neighborhood of current tree T measured
by a ball of radius η:

B(s, η) = {s′ ∈ S | ‖s′ − s‖ 6 η}.
Moreover, if the Postprocess operator is introduced to modify the maintained search tree
as in RRT∗ (Karaman & Frazzoli, 2011), the algorithm is provable to obtain the optimal
path asymptotically.

• If we instantiate the Expand operator as Algorithm 5, then we obtain the expansive-space
trees (EST) algorithm (Hsu et al., 1997; Phillips et al., 2004), which samples a state s from
the nodes of the existing tree, and then draw a sample from the neighborhood of s.

8



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Algorithm 4: RRT :: Expand(T , U)

Data: T = (V, E), U = (sinit,Sgoal,S,Sfree, map, c(·))
1 srand ← Unif(S); . Sample configuration space
2 sparent ← argmins∈V ‖srand − s‖; . Pull to a tree node
3 snew ← argmins∈B(sparent,η) ‖s− srand‖;
4 return sparent, snew;

Algorithm 5: EST :: Expand(T , U)

Data: T = (V, E), U = (sinit,Sgoal,S,Sfree, map, c(·))
1 sparent ∼ φ(s), s ∈ V; . Sample a tree node
2 snew ← Unif(B(sparent)); . Sample neighborhood
3 return snearest, snew;

B POLICY AND VALUE NETWORK ARCHITECTURE

We explain the implementation details of the proposed parametrization for policy and value function.
Figure 3 and Figure 4 are neural architectures for the attention module, the policy/value network, and
the planning module, respectively.

Input: state 𝑠 = 𝑠𝑤 , 𝑠ℎ ∈ ℝ𝑞

𝑠𝑤 ∈ ℝ𝑞𝑤 𝑠ℎ ∈ ℝ𝑞ℎ

Expand and Stack

𝑓0
𝑤(𝑠𝑤) ∈ ℝ𝑑×𝑑×4

Conv 1 × 1, 16, relu

Conv 1 × 1, 16, relu

Conv 1 × 1, 32, relu

Conv 1 × 1, 32, relu

Conv 1 × 1, 64, relu

Conv 1 × 1, 1

Spatial embedding

𝜇𝜃
𝑤(𝑠𝑤) ∈ ℝ𝑑×𝑑

Config embedding

𝜇𝜃
ℎ(𝑠ℎ) ∈ ℝ𝑑𝑎

Dense, 𝑑𝑎

Softmax Softmax

Dense, 64, relu

Element-wise 

product

Output:

Full embedding 𝜇𝜃(𝑠) ∈ ℝ𝑑×𝑑×𝑑𝑎

Attention

module

Input: goal state 𝑠𝑔𝑜𝑎𝑙 ∈ ℝ𝑞 Input: state 𝑠 ∈ ℝ𝑞Input: maze map ∈ ℝ𝑑×𝑑

Attention module

Goal embedding

𝜇𝜃(𝑠𝑔𝑜𝑎𝑙) ∈ ℝ𝑑×𝑑×𝑑𝑎

Stack

Task embedding ∈ ℝ𝑑×𝑑×(𝑑𝑎+1)

Conv 3 × 3, 𝑑𝑒 Conv 3 × 3, 𝑑𝑒

ℎ0 ∈ ℝ𝑑×𝑑×𝑑𝑒 𝑐0 ∈ ℝ𝑑×𝑑×𝑑𝑒

Planning module

ℎ𝑇 ∈ ℝ𝑑×𝑑×𝑑𝑒, reshape it to ℝ𝑑×𝑑×𝑑𝑎×𝑝

Element-wise product, sum 

over first 3 dimensions

𝜓(𝑠) ∈ ℝ𝑝

Dense, 32, relu

Dense, 32, relu

Dense, 𝑞 Dense, 1

Output: 𝜋∗(𝑠′|𝑠, 𝑈) Output: ෨𝑉∗(𝑠|𝑈)

Attention module

State attention

𝜇𝜃(𝑠) ∈ ℝ𝑑×𝑑×𝑑𝑎

Loop 𝑇 times

Figure 3: left: attention module, instantiating the Figure 6; right: policy/value network, instantiating
the Figure 7.

9



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

Planning

module

Input: ℎ𝑖 ∈ ℝ
𝑑×𝑑×𝑑𝑒 Input: 𝑐𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒

Conv 1 × 1, 𝑑𝑒

LSTM cell (input size: 𝑑𝑒, hidden size: 𝑑𝑒)

Batch size: 𝑑 × 𝑑

LSTM input: 𝑥𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒

Output: ℎ𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒 Output: 𝑐𝑖 ∈ ℝ𝑑×𝑑×𝑑𝑒

Figure 4: planning module

In the figures, we use rectangle blocks to denote inputs, intermediate results and outputs, stadium
shape blocks to denote operations, and rounded rectangle blocks to denote modules. We use different
colors for different operations. In particular, we use blue for convolutional/LSTM layers, green for
dense layers, and orange for anything else. For convolutional layers, ”Conv 1× 1, 32, relu” denotes a
layer with 1× 1 kernels, 32 channels, followed by a rectified linear unit; for dense layers, ”Dense, 64,
relu” denotes a layer of size 64, followed by a rectified linear unit.

The attention module (Figure 3-left) embeds a state to a d× d× da tensor. See equation (4) and (6)
for details for computing fw0 (sw) and µθ(s). The planning module (Figure 4) is a one-step LSTM
update which takes the result of a convolutional layer as input. Both the input and hidden size of the
LSTM cell are de. All d× d locations share one set of parameters and are processed by the LSTM in
one batch.

The main architecture is illustrated in Figure 3-right. It takes maze map, state and goal as input,
and outputs the action and the value. Refer to equation (7) for details for computing ψ(s). In our
experiments, we set the values of the hyper-parameters to be (d, de, da, p) = (15, 64, 8, 8).

10



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

C ALGORITHM ILLUSTRATIONS

We illustrate the learning process for NEXT, the attention module architecture, and the overall neural
network architecture for policy and value function in Figure 5, Figure 6, and Figure 7, respectively.

Goal

Start

Goal
Goal

Start
Start

l �
l � l � l �
� � � L�

max V+U

max V+U

Goal

Start

Goal

Start

max V+U

π(  |s)�

b. Selecta. New Task c. Generate d. Update

Repeat

l � �� � � L�

Goal

Start

Goal

Start

Goal

Start

se
lf-

im
pr

ov
e

se
lf-

im
pr

ov
e

max V+U

π(  |s)�

... ... ... ...

Figure 5: Illustration for the Meta Self-Improving Learning process for NEXT. Every row stands for
one epoch in Algorithm 3. In each epoch, a new planning task is generated randomly, as in column
(a). The algorithm takes the task and executes NEXT for planning. In every step of the planning, as
in column (b)&(c), the search tree grows using the learned Ṽ ∗ and π̃∗ for guidance. Such operation is
repeated until either a solution is found or the maximum iteration is achieved. Eventually, when the
planning path is obtained, the {Ṽ ∗, π̃∗} will be updated based on the successful path as in column
(d) and the whole epoch ends. The value function and the policy promote the performance of the
planner; meanwhile, the planner will generate samples to lift the value function and policy accuracy.
Such planning and learning iteration is continued interactively.

x
y

z

x x x
x x x
x x x

y y y
y y y
y y y

0 0 0

1 1 1

2 2 2

0 1 2

0 1 2

0 1 2

0 0.09 0

0 0 0

0 0 0

0 0.81 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0.9 0

0 0.1 0

0 0 0

Stack

z (dense, relu)  kx d

(1 1 conv, relu) � kx x c

0.1

0.9

0

0

...
x

Coordinate i Coordinate j

state

Spatial Attention: (d,d,1)

Config Attention: (1,1,d  ) Full Attention: (d,d,d  )

Element-wise Product

a a

x x x
x x x
x x x

y y y
y y y
y y y

0 0 0
1 1 1

2 2 2

0 1 2

0 1 2

0 1 2

Figure 6: Attention-based configuration space embedding module. We use sw = (x, y) to denote the
workspace coordinates of the input state s, and sh = z to denote the rest dimensions of s. The upper
part is inspired by the design of the CoordConv layer (Liu et al., 2018) to learn the spatial attention
better. At the preparation phase, we stacked four matrices with the same shape as the workspace map
as input. The first two channels are filled with x and y respectively, and the last two channels are
filled with the i and j grid coordinates. Then we apply several 1× 1 convolution layers to the input
and obtain the spatial attention. The bottom part learns the higher dimensional configuration attention
via several dense layers from z. Finally, the full attention µ(s) is computed via an element-wise
outer-product of the two sub-attentions.

11



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

x

Map: (d,d)

Element-wise Product
Sum over first 2 dimensions

Goal Attention

State Attention

Goal state: (q)

State s: (q)

 Module
Stack

Conv

Repeat k times

Attention 
Model

Attention 
Model

Planning

Figure 7: Overall model architecture. Both the initial state and the goal state are embedded with our
attention-based embedding module. Then embedding of the goal state is concatenated with the task
map to produce Ṽ ∗(0) and R̃ as the input to the planning module. Finally, the output of the value
iteration network is aggregated with the embedding of the initial state s to produce feature ψ(s) for
defining Ṽ ∗ and π̃∗.

D EXPERIMENT RESULTS

D.1 DETAILS OF QUANTITATIVE EVALUATION

More detailed results are shown in Table 1, 2, 3, including learning-based and non-learning-based
ones, on the last 1000 tasks in each experiment. We normalized the number of collision checks and
the cost of paths based on the solution of RRT∗. The success rate result is not normalized.

The best planners in each experiment are in bold. Our algorithm, i.e., NEXT-KS, achieves competitive
or even better results with others using 20 times fewer samples. In all tasks, the proposed algorithms,
including NEXT-KS and NEXT-GP outperform the current state-of-the-art planning algorithm with
large margins.

NEXT #samples-10k
KS GP GPPN RRT* BIT* BFS CVAE Reject RRT* BIT* CVAE Reject

2D 0.988 0.981 0.967 0.735 0.728 0.185 0.535 0.720 0.996 1.000 0.996 0.997
3D 0.943 0.841 - 0.490 0.036 0.121 0.114 0.498 0.937 0.758 0.654 0.940
5D 0.883 0.768 - 0.455 0.000 0.030 0.476 0.444 0.858 0.385 0.837 0.859

Table 1: Success rate results. The higher the better. The NEXT-KS achieves the best results using
only one-twentieth of samples.

NEXT #samples-10k
KS GP RRT* BIT* BFS CVAE Reject RRT* BIT* CVAE Reject

2D 0.177 0.243 1.000 1.154 9.247 1.983 1.011 4.635 1.030 14.308 5.008
3D 0.694 1.334 1.000 1.033 7.292 2.162 0.988 5.023 1.638 57.430 5.318
5D 0.888 1.520 1.000 1.004 5.758 1.188 0.997 8.525 1.888 24.373 8.329

Table 2: Average number of collision checks results. The lower the better. The score is normalized
based on the solution of RRT∗. The NEXT-KS performs the best.

NEXT #samples-10k
KS GP GPPN RRT* BIT* BFS CVAE Reject RRT* BIT* CVAE Reject

2D 0.172 0.193 0.272 1.000 1.050 2.811 1.649 1.050 0.167 0.188 0.154 0.165
3D 0.116 0.315 - 1.000 1.886 1.720 1.734 0.984 0.129 0.480 0.680 0.123
5D 0.215 0.426 - 1.000 1.835 1.780 0.961 1.020 0.261 1.128 0.299 0.259

Table 3: Average cost of paths. The lower the better. The score is normalized based on the solution of
RRT∗. The NEXT-KS achieves the best solutions.

12



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

We demonstrated the performance improvement curves for 2D workspace planning, 3D rigid body
navigation Figure 8. As we can see, similar to the performances on 5D 3-link snake planning tasks
in Figure 1, in these tasks, the NEXT-KS and NEXT-GP improve the performances along with more
and more experiences collected, justified the self-improvement ability by learning Ṽ ∗ and π̃∗.

0 1 2 3 4 5 6
Traning phase

0.75

0.80

0.85

0.90

0.95

1.00

Su
cc

es
s r

at
e

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

0 1 2 3 4 5 6
Traning phase

0

1

2

3

4

Av
er

ag
e 

co
llis

io
n 

ch
ec

ks

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

0 1 2 3 4 5 6
Traning phase

1

2

3

4

5

6

Av
er

ag
e 

pa
th

 c
os

t

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

0 1 2 3 4 5 6
Traning phase

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

0 1 2 3 4 5 6
Traning phase

1

2

3

4

5

Av
er

ag
e 

co
llis

io
n 

ch
ec

ks
RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

0 1 2 3 4 5 6
Traning phase

2

4

6

8

10

12

14

Av
er

ag
e 

pa
th

 c
os

t

RRT*
RRT*-10k

BIT*
BIT*-10k

NEXT-KS
NEXT-GP

Figure 8: The first and second rows display the improvement curves of our algorithms on all 3000
tasks of the 2D workspace planning and 3D rigid body navigation problems. We compare our
algorithms with RRT∗ and BIT∗. Three columns correspond to the success rate, the average collision
checks, and the average cost of the solution paths for each algorithm.

D.2 SOLUTION PATH EXAMPLE

Here we provide an example of the solution paths found by NEXT on all three types of tasks.

Figure 9: The solution path produced by NEXT in a workspace planning task, rigid body navigation
task, 3-link snake task from left to right. The orange dot and the brown dot are starting and goal
locations, respectively.

D.3 SEARCH TREES COMPARISON

We illustrate the search trees generated by RRT∗ and the proposed NEXT algorithms with 500
samples in Figure 10, Figure 11, and Figure 12 on several workspace planning, rigid body navigation,
and 3-link snake planning tasks, respectively. Comparing to the search trees generated by RRT∗ side
by side, we can clearly see the advantages and the efficiency of the proposed NEXT algorithms. In all
the tasks, even in 2D workspace planning tasks, the RRT∗ indeed randomly searches without realizing
the goals, and thus cannot complete the missions, while the NEXT algorithms search towards the
goals with the guidance from Ṽ ∗ and π̃∗, therefore, successfully provides high-quality solutions.

13



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

(a) RRT∗ search tree (b) NEXT-KS search tree (c) NEXT-GP search tree (d) learned Ṽ ∗ and π̃∗

Figure 10: Column (a) to (c) are the search trees produced by the RRT, NEXT-KS, and NEXT-GP on
the same workspace planning task. The learned Ṽ ∗ and π̃∗ from NEXT-KS are plotted in column
(d). In the figures, obstacles are colored in deep blue, the starting and goal locations are denoted
by orange and brown dots, respectively. In column (a) to (c), samples are represented with hollow
yellow circles, and edges are colored in green. In column (d), the level of redness denotes the value
of the cost-to-go estimate Ṽ ∗, and the light blue arrows point from a given state s to the center of the
proposal distribution π̃∗(s′|s, U). We set the maximum number of samples to be 500.

14



Presented at the Task-Agnostic Reinforcement Learning Workshop at ICLR 2019

RRT search trees

NEXT-KS search trees

Figure 11: Each column corresponds to one example from the rigid body navigation problem. The
top and the bottom rows are the search trees produced by the RRT and NEXT-KS, respectively. In
the figures, obstacles are colored in deep blue, and the rigid bodies are represented with matchsticks.
The samples, starting states, and goal states are denoted by yellow, orange, and brown matchsticks,
respectively. Edges are colored in green. We set the maximum number of samples to be 500.

RRT search trees

NEXT-KS search trees

Figure 12: Each column corresponds to one example from the 3-link snake problem. The top and the
bottom rows are the search trees produced by the RRT and NEXT-KS, respectively. In the figures,
obstacles are colored in deep blue, and the rigid bodies are represented with matchsticks. The samples,
starting states, and goal states are denoted by yellow, orange, and brown matchsticks, respectively.
Edges are colored in green. We set the maximum number of samples to be 500.

15


	Introduction
	Neural Exploration-Exploitation Trees
	Guided Progressive Expansion
	Neural Architecture
	Meta self-improving learning

	Experiments
	Tree-based Sampling Algorithms
	Policy and Value Network Architecture
	Algorithm Illustrations
	Experiment Results
	Details of Quantitative Evaluation
	Solution Path Example
	Search Trees Comparison


