
Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

CONTROL WHAT YOU CAN: INTRINSICALLY MOTI-
VATED REINFORCEMENT LEARNER
WITH TASK PLANNING STRUCTURE

Anonymous authors
Submission under double-blind review

ABSTRACT

We present a hierarchical reinforcement learning agent that is intrinsically moti-
vated to learn how to control its observation space in the fastest possible manner
by optimizing learning progress. Our agent learns what can be controlled, how to
allocate time and attention, and the relations between objects in the environment.
We show the effectiveness in multi-stage object manipulation tasks. In a nutshell,
our work combines several task-level planning ideas (e.g., backtracking search on
task graph, probabilistic road-maps, allocation of search efforts, etc.), in the form
of structured prior, with deep RL control and relational reasoning to learn from
scratch.

1 INTRODUCTION

This paper studies how to make an autonomous agent learn to gain maximal control of its environment
under little external reward. To answer this question, we turn to the young experts among us and
ask: what would children do? They play, often with any objects within their reach. The purpose may
not be immediately clear to us. But to play is to manipulate, to gain control. In the same spirit, we
specifically design a Reinforcement learning (RL) agent that is 1) intrinsically motivated by gaining
control of the environment 2) capable of learning its own curriculum and reasoning about object
relations.

As a motivational example, consider an environment with a heavy object that cannot be moved
without using a tool such as a forklift, as depicted in Fig. 1(a,b). The agent needs to be able to control
itself and the tool, and use it to move the heavy object. In the beginning, we do not assume the agent
has knowledge of the tool, object, or physics. It needs to learn from scratch.

Without external rewards, an agent may be driven by intrinsic motivation (IM) to gain control over
its own internal representation of the world, which includes itself and objects in the environment.
It often faces a decision of what to attempt to learn with limited time and attention: if there are
several objects that can be manipulated, which one should be dealt with first? In our approach the
scheduling is solved by an automatic curriculum that aims at improving learning progress. The
learning progress, as detailed in Sec. 2, may have its unique advantage over other quantities such
as prediction error (curiousity): it renders unsolvable tasks uninteresting as soon as progress stalls.

(a) schematics of tool use (b) environment

agent

locomotion
goal

tool
heavy
obj. goalheavy obj.

50% obj. random

(c) Resource allocation

Figure 1: Basic object manipulation environment illustrated in (a) with a screenshot in (b). During
learning it allocates resources wisely (c).

1

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

Table 1: A list of recent methods in intrinsically motivated RL and their differences.

Intrinsic motivation Computational methods
CWYC Ours learning progress + prediction error HRL, SAC, relational attention
h-DQN Kulkarni et al. (2016) reaching subgoals HRL, DQN
IMGEP Forestier et al. (2017) learning progress memory-based
CURIOUS Colas et al. (2018) learning progress DDPG, HER, E-UVFA
SAC-X Riedmiller et al. (2018) auxiliary task HRL, (DDPG-like) PI
Relational RL Zambaldi et al. (2018) - relation net, IMPALA
ICM Pathak et al. (2017) prediction error A3C, ICM
Goal GAN Florensa et al. (2018) adversarial goal GAN, TRPO
Asymmetric self-play Sukhbaatar et al.
(2017)

self-play Alice/Bob, TRPO, REINFORCE

Fig. 1(d) demonstrates that our agent, motivated by its learning progress, is able to allocate resources
wisely to gain maximal control over the environment.

Inspired by the exciting progress of task-level planning from the robotics and AI planning communi-
ties, we model the RL agent using temporal abstraction in the form of chained subtasks. In practice,
this is modeled as a task graph as in Fig. 1(c). In order to perform manipulation, the agent and the
tool need to be in a specific relation. Our agent learns relationships by an attention mechanism which
generalizes to new environments. Instead of following an end-to-end approach, we provide a core
reasoning structure about tasks and subgoals.

Our main contributions are:

1. We propose to combine several task-level planning ideas (e.g., backtracking search on task
graph/goal regression, probabilistic road-maps, allocation of search efforts, etc.), in the form
of structured prior, with deep RL control to achieve task completion and skill acquisition
from scratch.

2. We demonstrate maximizing controlablity and learning progress are an effective form of
intrinsic motivation for RL.

Due to the large volume of recent intrinsically motivated RL studies, we list a few approaches in
Table 1 to help readers clearly understand the relation of our work and the existing methods.

2 METHOD

This study proposes to use gaining controllability of the agent’s environment as the driving force for an
autonomous agent. We call the method Control What You Can (CWYC). The goal is to make an agent
learn to control itself and objects in its environment, or more generically, to control the components
of its internal representation. This idea originates from the controllability/reachability concept in
control theory Kalman et al. (1960). We consider the control of each part of the representation
space (e. g. objects) as one task. During the learning/development phase, the agent can decide which
task/object to attempt to control. This requires the learning algorithm to spend available resources
wisely on tasks where the agent can make progress and inferring potential dependencies between
tasks. In order to express the capability of controlling a certain object, we consider goal-reaching
tasks with randomly selected goals. If the agent can successfully bring the object to arbitrary goal
positions, then it has achieved control of the object.

Our approach contains several components as illustrated in Fig. 2, namely tasks [1], intrinsic
motivation [2], task selector [3], task dependencies [4],[5], subgoal generator [6], task policies
[7], and history buffers and forward models [8]. The highlevel interplay of the components is
described in the figure caption of Fig. 2.

All components are trained concurrently and without supervision. Prior knowledge enters only in the
form of specifying the goal spaces (groups of coordinates of the state space). The environment allows
the agent to select which task to do next and generates a random arrangement with a random goal.

Further details abaout all the introduced componanent can be found in Suppl. A

2

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

cu
rr

e
n
t

su
b

ta
sk

preceding subtask

[1] Tasks [3] Task selector [4] Task planner

Start

[7] Trial in environment

su
cc

e
ss

epoch

p
ro

g
re

ss
p
re

d
_e

rr

t

epoch

[6] Subgoal generator

[5] Dependency graph

[8] History and
forward models

History

progress

success
rate prediction

errors

Intrinsic motivation[2]

1 2 K

1

2

K

...

...

3

3

312

K

jS

312

S

S

goalgoal

final
goal

1 2 K...3

Figure 2: Overview of CWYC method. [1] For each task of all tasks T , the agent stores a history to
keep track of training progress. [2] An intrinsic motivation module computes the rewards and target
signals for 3,4, and 6 based on learning progress and prediction errors. [3] A task selector (bandit) is
used to select a self-imposed task (final task) maximizing expected learning progress. [4] Given a
final task, the task planner computes a viable subtask sequence (bold) from a learned task graph [5].
[6] The subgoal generators (attention networks) create goals in each subtask. [7] After one rollout
different quantities measuring the training progress are computed and stored in the per task history
buffer [8].

3 EXPERIMENTAL RESULTS

In this section, we present the experiment in a continuous environment for controlling objects. We
want to demonstrate that the agent with CWYC learns efficiently to gain control over the environment.

In all our experiments we use our CWYC agent and the following baselines: In the SAC baseline
the low-level controllers for each individual task (controlling the coordinates) try to solve them
independently and spend resources on all tasks with equal probability. We also add an upper baseline
which is our algorithm, but with handcrafted task planner (B) and subgoal generator (G) denoted as
crafted, see Suppl. F. The task selector Π [3] is, however, learned to spend resources wisely.

3.1 BASIC OBJECT MANIPULATION

The basic object manipulation environment has continuous state and action spaces. It is imple-
mented in the MuJoCo physics simulator (Todorov et al., 2012). The agent is a modeled as
a physical object with two degrees of freedom which can move in the xy-plane. The environ-
ment has walls and several objects. The observation vector for d objects is structured as follows
(x, y, o1x, o

1
y, . . . , o

d
x, o

d
y, ẋ, ẏ, p

1, . . . , pd), where (x, y) is the position of the agent, (oix, o
i
y) is the

position of the i-th object and pi indicates whether the agent is in possession of the i-th object. The
goal spaces are the coordinates of the agent (x, y) and the coordinates of each object (oix, o

i
y).

In what follows, we consider the Tool-Use case with 4 objects: 1. the tool, that can be picked up
easily; 2. the heavy object that needs the tool to be moved; 3. an unreliable object denoted as 50%
object, that does not respond to control during 50% of the rollouts; 4. a random object that moves
around randomly and cannot be manipulated by the agent, see Fig. 1(b). The detail of the physics in
this environment can be found in Suppl. C.

Figure 3 presents the training progress for our algorithm and the two baselines, SAC and crafted.
Each task accounts for 20% of the total overall competence. In this setting an average maximum
of 70% can be achieved, due to the “random object” and “50% object”. The SAC baseline attempts
to solve each task independently and spends resources equally between tasks. It only succeeds in
the locomotion task. It cannot learn to pick up any of the other objects. As a remark, the arena is

3

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

(a) Task competences (b) learned task graph

random
obj

50%
obj

toollocostart

heavy
obj

(c) task planner

Figure 3: (a) Task competence of the agents in solving all 5 tasks in the tool-use setting. Overall
performance (top left) can be maximal 70%. Individual tasks competences follow in the remaining
panels. Learned task graph (a) and its matrix representation (b) in the tool-use setting. The arrows
point to the preceding task, which corresponds to the planning direction. Line strength corresponds
to the probability of using this transition. The probabilities of selecting task i (row) before task j
(column) is shown in (b). Self-loops (gray) are not permitted. Every sub-task sequence begins in the
start state.

relatively large such that random encounters are not very likely. The results show that our method
is able to quickly gain control over the environment. After 107 steps, the agent can control what is
controllable.

Analysis of gaining control. How does the agent gain control of the environment? Let us inspect
the overall resource allocation as shown in Fig. 1(c). Starting from all tasks are uniformly selected,
the agent quickly spends most time on the locomotion, because it can be directly controlled and is the
easiest among all tasks. After locomotion can be solved well enough, to be able to make progress on
the immediately movable objects, the agent starts to concentrate on them (tool and the “50% object”).
Afterwards, the heavy object becomes controllable due to the competence in the tool task (at about
3 · 106 steps) and gets a higher share. The task selector produces the expected result that simple tasks
are solved first and stop getting attention as soon as they cannot be improved more than other tasks.
This is in contrast to approaches that are solely based on curiosity/prediction error. As a remark, the
learned resource allocation of the crafted agent is similar to that of CWYC.

Understanding the structure. The resource allocation alone is not the solution to the problem of
gaining control. The deep RL agent (SAC) cannot solve the more complicated tasks. One reason
is that informative states are visited rarely. Another reason is that relations between objects are
important but this structure is difficult to pick up directly.

The dependencies between tasks is learned by the task planner B, see Fig. 2[4]. Initially the
dependencies between the subtasks are unknown such that B(i, j) = 0 resulting in a 1/K probability
of selecting a certain preceding subtask. After learning, the CWYC agent has found which task needs
to be executed before which other one, as displayed in Fig. 3(c). The underlying policy of selecting
task j before task i is shown in Fig. 3(b). The agent has found that locomotion can be done directly
(probability ≈ 1). It also deduced from the experience, that the tool needs the locomotion task to be
moved (second row) and that the heavy object needs the tool (third row).

Knowing that locomotion is needed to move the tool is very helpful, but by itself not sufficient.
Where should the agent move? This is where the object relations learned by the subgoal generators
(Fig. 2[6]) come in. The subgoal generators Gi,j learn initially from surprising events and attempt
to learn the relation among the components of the observation vector. For instance, every time

4

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

(a) Subgoal proposal networks

initial locomotion →
tool

tool → heavy
object

(b) Reachability

t = 0 t = 0.5 × 107 t = 1.4 × 107

Figure 4: Subgoal proposal networks and the learned object relationships. (b) Reachability of the
heavy object. Plotted is the success-rate in xy-plane of the arena. The color of each point reflects the
probability of reaching it with the heavy box from 20 random starting states.

the tool is moved, the agent’s location is close to that of the tool. Figure 4 displays the learned
relationships for the subgoal generation of locomotion→ tool transition and for tool→ heavy object
transition. For visualization purposes we present a reduced parametrization, namely min(|w1|, |w2|).
A non-zero value indicates that the corresponding components are involved in the relationship. The
full parametrization is visualized and explained in Suppl. E. However, in general G can also model
different relationships, such that fixed offsets between objects or fixed locations.

At the beginning of each subtask the goal proposal network computes the goal with the highest value.
In case of the tool-moving task the goal for the locomotion policy is computed to be at the location of
the tool (first row in Fig. 4(a)(middle)). For moving the heavy object, both the agent and the tool have
to be at the heavy box for it to be successfully moved. This is learned by the corresponding G, see
Fig. 4(a)(right). This process is fully general and automatic. Figure 5 illustrates the function value
and the proposed goals.

Reachability in space: We want to quantify how well the agent can move the heavy box to any
location in space, i. e. the reachability. We consider a fine grid spanning the arena. For each point
on the grid we measure the success-rate of reaching it with the heavy box from 20 random starting
states of tool and heavy object. Figure 4(b) visualizes this success-rate for different snapshots of the
system at the beginning, an intermediate state, and after mastering all tasks. It can be seen that the
reachability grows with time and reaches almost full coverage.

4 DISCUSSION

We present control what you can (CWYC) that makes an autonomous agent learn to control its
observation space effectively. We impose a structure prior that is suitable for task planning while
all components, except the state representation, are learned from scratch. CWYC shows superior
performance in learning speed of controlling difficult parts of the environment, where the baseline
fails. Our method uses learning progress as the driver for an automatic curriculum. which allows the
agent to not invest resources in uncontrollable objects, nor try unproportionally often to improve its
performance on not fully solvable tasks. This is different from approaches solely based on curiosity.

(a) loco. → tool (early) (b) loco. → tool (late) (c) tool → heavy object

Figure 5: Visualized function value of the goal proposal networks. The concentric circles show the
equi-value lines.

5

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

REFERENCES

Cédric Colas, Pierre Fournier, Olivier Sigaud, and Pierre-Yves Oudeyer. Curious: Intrinsically
motivated multi-task, multi-goal reinforcement learning, 2018. arXiv preprint https://arxiv.
org/abs/1810.06284.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International Conference on Machine Learning, pp. 1514–1523,
2018.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated goal exploration
processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190, 2017.

Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana,
5(2):102–119, 1960.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
Neural Information Processing Systems, pp. 3675–3683, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning (ICML), volume
2017, 2017.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de
Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing-
solving sparse reward tasks from scratch. arXiv preprint arXiv:1802.10567, 2018.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, Oct 2012.
doi: 10.1109/IROS.2012.6386109.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830, 2018.

6

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

SUPPLEMENTARY MATERIAL TO
CONTROL WHAT YOU CAN: INTRINSICALLY MOTI-
VATED REINFORCEMENT LEARNER WITH TASK PLAN-
NING STRUCTURE

Anonymous authors
Submission under double-blind review

The supplementary information is structured as follows. We start with a detailed explanation of all
the components introduced in the methods section. We give the algorithmic details in the next section.
We provide further information on the environment in Sec. C and on the training procedure in Sec. D.
Sec. E elaborates on the goal proposal networks.

A METHOD DETAILS

In order to explain the architecture let us use a concrete example, already mentioned in the introduction.
Assume, the environment contains two objects, a tool (forklift) which is easy to carry/transport and a
heavy object which can only be moved when in possession of the tool.

We assume the state space S is partitioned into potentially controllable coordinates called goal spaces.
These can be e. g. the agents position, object positions and so forth, for instance:

s = (xself, yself︸ ︷︷ ︸
goal space 1

, xo1, yo1︸ ︷︷ ︸
goal space 2

, xo2, yo2︸ ︷︷ ︸
goal space 3

, ẋself, ẏself, . . .), (S1)

however, the semantics are unknown to the agent. Generally, some goal spaces might be hard
to control, which will make the corresponding task difficult to achieve directly. In our example,
the heavy object needs the tool that is somewhere in the environment. The agent should ideally
discover relations between the subtasks/goal-spaces and how to optimally chain tasks. We propose an
intrinsically motivated hierarchical learning framework based on a probabilistic graph and relational
learning on top of a multi-goal reinforcement learning algorithm employed in each task.

A.1 TASKS AND GOAL SPACES

In our setting, a task τ ∈ T = {1, 2, . . . ,K} consists of reaching a goal gi in a certain subspace
of the observation space. The corresponding coordinates in s at denoted by mi as in Eq. S1. For
instance, if task 1 has its goal-space along the coordinates 3 and 4 then m1 = (3, 4) and sm1

is the
state values in that goal-space. The agent computes the reward for the low-level controller as the
negative distance to the goal as ri = −‖smi

− gi‖ and declares success as:

succi =

{
1 ‖smi

− gi‖ ≤ δi
0 otherwise

(S2)

where δi is a precision threshold.

We assume there is a certain fixed dependency among tasks. For instance, moving a heavy object
needs the subtask of getting the fork-lift and this requires the subtask of locomotion before. Task
dependencies and the task ordering are initially unknown to the learner and need to be inferred in an
unsupervised manner.

A.2 INTRINSIC MOTIVATIONS AND FORWARD MODELS

In general, our agent is motivated to learn as fast as possible, i. e. to have the highest possible learning
progress, and to be as successful as possible in each task. We use different measures to express
intrinsic motivations:

1

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

Success rate sri = E(succi) this is estimated by the sample running mean of the last attempts.

Learning progress ρi = d sri
d t is the time derivative of the success rate, quantifying whether the

agent gets better at task i.

However, initially, any success signals might be very sparse such that learning is slow because of
uninformed exploration. Hence, we employ a proxy that guides the agents attention to tasks and
states that might be interesting.

Prediction error ei(t) of an adaptive forward model in goal space i. We train a forward model
f : [S ×A]→ S to learn the state changes induces by one step using the usual square-loss.
The error is

e(t) = ‖(f(st, at) + st)− st+1‖2 (S3)

and ei = emi
refers to error in the goal space of task i.

Surprising events surprisei(t) ∈ [0, 1] is 1 if the time derivative of the prediction error ėmi
(t) in

task i exceeds a confidence interval computed independently on each rollout, 0 otherwise
(?).

To understand why surprising events can be informative, let us consider again our example: Assume
the agent just knows how to move itself. It will move around and will not be able to manipulate other
parts of its state-space, i. e. it can neither move the box nor the tool. Whenever it accidentally hits the
tool, the tool moves and creates a surprise signal in the coordinates of the tool task. Thus, it is likely
that this particular situation is a good starting point for solving the tool task. In addition, the tool task
might be worth exploring.

A.3 FINAL TASK SELECTOR

The task selector Π [3] models the learning progress when attempting to solve a task and is imple-
mented as a multi-armed bandit. While no learning progress is available, the surprise signal is used
as a proxy. Thus, the internal reward signal for the bandit per rollout is

rΠ(i) = |ρi|+ βΠ max
t

(surprisei(t)) (S4)

with βΠ � 1. We use the absolute value of the learning progress |ρ| because the system should
both learn when it can improve, but also if performance degrades ?. Initially, the surprise term
dominates the quantity. As soon as actual progress can be made ρ takes the leading role. The reward
is non-stationary and the action-value is updated according to

QΠ(i) = QΠ(i) + αΠ(rΠ(i)−QΠ(i)) (S5)

with learning rate αΠ. The task selector is to choose the (final) task for each rollout relative to their
value accordingly. We want to maintain exploration, such that we opt for a stochastic policy with
pΠ(τ = i) = QΠ(i)/

∑
iQ

Π(i). In our setup, the (final) goal within this task is determined by the
environment (in a random fashion).

A.4 TASK PLANNER

Given the final task selected by the task selector, the agent has to decide which subtasks to perform.
This is taken care of by the task planner, the higher level control of the hierachical reinforcement
learning agent. The task planner models how well/quick the task i can be solved when doing task j
directly before in terms of the time Ti,j needed to solve task i. If the task cannot be solved Ti,j = TT,
where TT is the maximum number time steps in the rollout, there is no success signal. As before
we use the surprising events as a proxy signal for potential future success. The values of each task
transition are captured by B(i, j), where i ∈ [1, . . . ,K] and j ∈ [S, 1, , . . . ,K] with S representing
the start. Each entry of the B matrix is learned with a multi-armed bandit with action-values QB(i, ·):

B(i, ·) = normalize(QB(i, ·)) (S6)

QB(i, j) =
TT − 〈Ti,j〉

TT
+ βB〈max

t
(surprisei(t))〉 (S7)

2

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

where 〈·〉 denotes a running average and Ti,j is the runtime for solving task i by doing task j before.

Similarly to Eq. S4, this quantity is initially dominated by the surprise signals and later by the actual
success values (nonzero if the time is shorter than the maximal time TT). Thereby, Ti,j not only
reflects the competence of the low-level policy in solving the task, i. e. reaching a certain goal state,
but also the quality of the goal proposal networks (discussed in the following section). Only if the
reached goal state using policy j actually helps solving task i a success can be achieved.

The B matrix represents the adjacency matrix of the task graph, see Fig. 2[5]. It is used to construct a
sequence of subtasks κ in the following way: Starting from the final task τ we draw the previous
subtask (option) with an ε-greedy policy using B(τ, ·). Then this is repeated for the next subtask,
until S (start) is sampled, see also Fig. 2[4] and [5].

A.5 GOAL PROPOSAL: RELATIONAL ATTENTION NETWORK

Each (sub)task is itself a goal-reaching problem. In order to decide which subgoals need to be chosen
we employ an attention network for each task transition, i. e. Gi,j for the transition from task j to task
i. As before, the aim of the goal proposal network Gi,j is to maximize the success rate of solving
task i when using the proposed goal in task j before. In the example, in order to pick up the tool,
the goal of the preceding locomotion task should be the location of the tool. An attention network
that can learn relations between observations is required. We use an architecture that models local
pairwise distance relationships. It associates a value/attention to each point in the goal-space of the
preceding task as a function of the state s: Gi,j : S → R: (omitting index i,j)

G(s) = e−γ
∑n

k=1

∑n
l=k+1 ‖w1

klsk+w2
klsl+w

3
kl‖2 (S8)

where w1, w2, w3, and γ are trainable parameters. The network is trained using a square-loss with
the following target signal rGi,j(st) ∈ [0, 1]:

rGi,j(st) = min(1, succi · Γi,j(st) + surprisei(t)) (S9)

for all st that occurred during task j where Γi,j(s) is 1 if the switching state from task j to task i
occurred in state s and zero otherwise. To get an intuition about the parametrization, consider a
particular pair of coordinates (k, l), say agent’s and tool’s x-coordinate. The model can express with
w1
k,l = −w2

k,l 6= 0 that both have to be at distance zero for rG to be 1. However, with w3 the system
can also model offsets, global reference points and other relationships. Details on the architecture and
training can be found in E. We observe that the goal proposal network can learn a relationship after
a few examples (in the order of 10), possibly due to the restricted model class. The goal proposal
network can be thought of as a relational network ?.

A.6 SUBGOAL SAMPLING

For each subtask the goal is selected with the maximal value in the attention map. However,
coordinates of tasks that are still to be solved in the task-chain are fixed, because they can likely not
be controlled by the current policy. Formally:

s∗ = arg max
s′

Gi,j(s
′) (S10)

subject to s′mk
= smk

, ∀k ∈ κ(i+)

where κ is the task-chain and κ(i+) denotes all tasks after i and including i. The goal for subtask
j is then goalj(s) = s∗mj

. Thanks to the parametrization, the solution of Eq. S10 can be computed
analytically.

A.7 LOW-LEVEL CONTROL

Each task i has its own policy πi which is trained separately using an off-policy deep RL algorithm.
We use soft actor critic (SAC) ?, where the policy and the critic networks are parametrized by the
goal (UVFA (?)).

3

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

A.8 TRAINING / OVERALL PROCEDURE

All components are initialized randomly. A rollout starts with the (final) task determined by the task
selector. The task planner constructs the task chain κ. For the first task in κ a subgoal computed
by the goal proposal network. Given the subgoal the goal-parametric policy of that task is used.
Whenever the goal is reached (up to a certain precision) a switch to the next task occurs. Again the
goal proposal network is employed to select a goal in this task, unless it is the final task where the
final goal is obviously used. If a goal cannot be reached the task ends after TT steps. In practice
we run 5 rollouts in parallel. Then all components are trained using the collected data. For the
task selector and task planner we use Eq. S5 and Eq. S7, respectively. Forward model and Gs are
trained using square-loss and Adam (?). The policies are trained according to SAC. Pseudo-code and
implementation details can be found in the Supplementary Material (B, D).

B PSEUDOCODE

Algorithm 1 CWYC

1: for epoch in epochs do
2: for cycle in cycles do
3: sample main task τfinal ∼ Π
4: sample main goal gτfinal from environment
5: compute task chain κ from B(τfinal)
6: // κ contains list task indices
7: i = 1
8: while t < T and no success in τfinal do
9: τ = τκ[i]

10: if τ 6= τfinal then
11: sample goal gτ from G(κ[i], κ[i+ 1])
12: end if
13: try to reach gτ with policyτ
14: if success(κ[i]) then
15: i = i+ 1 // next task in task chain
16: end if
17: end while
18: store episode in history buffer
19: calculate statistics based on history
20: train policies for each task
21: train B // Sec. A.4
22: train all G // Sec. A.5
23: train Π // Sec. A.3
24: end for
25: end for

C ENVIRONMENT

The environment that we use is depicted in Fig. 1 and is simulated by the physics engine MuJoCo.
The agent is modeled by a ball that is controlled by applying force in the x and y axis, so the agent’s
action corresponds to a 2-dimensional vector:

a = (Fx, Fy) (S11)

The motion of the agent is subject to the laws of motion with the application of friction from the
environment which makes it non-trivial to control. Other than the agent, the environment contains
objects with different dynamics. The positions of the objects are part of the observation space of the
agent along with a flag that specifies if the object has been picked up by the agent. We are dealing
with a fully observable environment.

4

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

We define the goal spaces of the tasks as corresponding to the position of the individual objects. Some
objects are harder to move than others and have other objects as dependencies. This means that the
agent has to find this relation between them in order to successfully master the environment.

The types of objects that are used in the experiments are the following:

• Static objects cannot be moved

• Random objects move randomly in the environment, but cannot be moved by the agent

• 50% light objects can be moved in 50% of the rollouts

• Tool can be moved and used to move the heavy object

• Heavy objects can be moved when using the tool

D TRAINING DETAILS AND PARAMETERS

• Training:
parallel rollout workers: 5
rollouts (per cycle): 5 (1 per worker)
cycles (per epoch): 10

• Environment:
arena size: 20× 20
TT: 1600

• SAC:
lr: 3× 10−4

batch size: 64
policy type: gaussian
discount: 0.99
reward scale: 5
target update interval: 1
tau (soft update) 5× 10−3

action prior: uniform
reg: 1× 10−3

layer size (π, q, v): 256
layers (π, q, v): 2
train iterations: 200
buffer size: 1× 106

• Forward model:
lr: 10−4

batch size: 64
input: (ot−1, ut−1)
confidence interval: 5
network type: MLP
layer size: 64
layers: 2
train iterations: 100

• Final task selector:
βΠ: 10−2

αΠ: 10−1

• Task planner:
βB : 10−1 avg. window size: 100

• Goal proposal network:

5

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

lr: 10−3

batch size: 64
L1 reg.: 10−5

L2 reg.: 10−5

γ init: 1.0
γ trainable: False
train iterations: 30

E TRAINING DETAILS OF THE GOAL PROPOSAL NETWORK

In an ever-changing environment as the ones presented in this paper, the goal proposal networks
are a critical component of our framework that aim to learn relations between entities in the world.
Transitions observed in the environment are labeled by the agent in interesting and undetermined
transitions. Interesting transitions are those, in which a surprising event (high prediction error) occurs
or which lead to an success in task i given some other task j was solved before, see Eq. S9. All
other transitions are labeled as undetermined, since they might contain transition which are similar to
those that are labeled interesting but didn’t spark high interest. Coming back to our running example:
bumping into, hence suddenly moving, the tool might spark interest in the tool because of a suddenly
jump in prediction error. In general, the behaviour of an object after the surprising event is unknown
and label for these transitions is not clear.

Conclusively, we discard all undetermined transition within a rollout that come after a transition with
positive label. After discarding these transition from the unlabeled data, there is still data that is
either very similar to positively labeled data but did not spark interest, e.g., all the transitions where
the agent is really close to the object but does not touch it yet. We reduce the impact of this data
by classifying the undetermined data in a training batch with the latest version of the network and
discard 20% of the data that is most similar to the positive labeled data. This is inspired by techniques
in PU learning [Li & Liu, "Learning from Positive and Unlabeled Examples with Different Data
Distributions.", ECML 2005].

After removing all data that might prevent the goal proposal networks from learning the right relations
it remains the problem that positive events are rare compared to the massive body of undetermined
data. Hence, we balance the training data in each batch during training.

To make efficient use of the few positive samples we collect in the beginning of the training we impose
a structural prior on the goal proposal network given by Eq. S8. The weight matrices are depicted
in Fig. S1. This particular structure restricts the hypothesis space of the component to positional
relations between components in the observation space that contains entities in the environment.
In the main text, Figure 4 shows a compact representation of the initial and final weight matrices
for different tasks that are computed by taking the minimum over w1 (left column) and w2 (middle
column) in Fig. S1.

To understand the parametrization, consider to model that two components (k, l) of s should have the
same value for a possitive signal, then w1

kl ≈ −w2
kl should be nonzero and w3

kl| = 0. In this case the
corresponding term in the exponent of Eq. S9 is zero if sl = sk. We see that in the case of the learned
G in Fig. S1 this relationship is true for the relevant components (position of agent, tool and object).

F HAND-CRAFTED UPPER BASELINE

To assess the maximum performance of CWYC in the described settings, we crafted an upper baseline
in which all learned components, except for the final task selector Π, are fixed and set to their optimal
value.

In the distractor setting, every task is solved by first doing the locomotion task. The goal proposal
network Gi,j(s) returns always the state value smi

, reflecting the ground truth relation we try to
learn.

In the tool-use setting, the task graph depicted in Figure S2 is used. As in the distractor setting,
Gi,j(s) returns always the state value smi .

6

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

Init

ag
en
t

to
ol ...

agent

tool

...

ag
en
t

to
ol ... ag

en
t

to
ol ...

Locomotion→ Tool

agent

tool

...

Tool→ Heavy object

agent

tool

...

Figure S1: Weights learned by goal proposal networks for different task transitions. The left column
shows the weights of w1, the middle column of w2 and the right column of w3 (see Eq. S8).

7

Under review at the Workshop on “Task-Agnostic Reinforcement Learning” at ICLR 2019

random
obj

50%
obj

toollocostart

heavy
obj

Figure S2: Crafted dependency graph.

G INTRINSIC MOTIVATIONS

For computing the success rate we use a running mean of the last Z = 50 attempts of the particular
task:

sri(cycle) = 1/Z

Z∑

z=0

succi(−z) (S12)

where succi(−z) denotes the z-th last rollout where task i was attempted to be solved.

The learning progress ρi is then given as the finite difference of sri between subsequent attempts of
task i.

To compute the surprise signal surprisei we compute the statistics of the prediction error derivative
over one rollout, i. e. we assume

(ei(t)− ei(t− 1)) ∼ N (µi, σ
2
i) (S13)

and compute the empirical µ and σ. Denoting the finite difference by ėi, surprise within one rollout
is then defined as

surprisei(t) =

{
1 if |ėi(t)| > µi + 5.0σi
0 otherwise.

(S14)

8

